|
|
Spin-resolved quantum transport in graphene-based nanojunctions |
Jian-Wei Li1,Bin Wang1( ),Yun-Jin Yu1,Ya-Dong Wei1,Zhi-Zhou Yu2,Yin Wang2( ) |
1. College of Physics and Energy, Shenzhen University, Shenzhen 518060, China 2. Department of Physics, The University of Hong Kong, Hong Kong, China |
|
|
Abstract First-principles calculations were performed to explore the spin-resolved electronic and thermoelectric transport properties of a series of graphene-nanoribbon-based nanojunctions. By flipping the magnetic moments in graphene leads from parallel to antiparallel, very large tunneling magnetoresistance can be obtained under different gate voltages for all the structures. Spin-resolved alternating-current conductance increases versus frequency for the short nanojunctions but decreases for the long nanojunctions. With increasing junction length, the behavior of the junctions changes from capacitive-like to inductive-like. Because of the opposite signs of spin-up thermopower and spin-down thermopower near the Fermi level, pure spin currents can be obtained and large figures of merit can be achieved by adjusting the gate voltage and chemical potential for all the nanojunctions.
|
Keywords
TMR
AC conductance
thermoelectric transport
NEGF-DFT
|
Corresponding Author(s):
Bin Wang,Yin Wang
|
Issue Date: 17 October 2016
|
|
1 |
A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett. 29(2), 277 (1974)
https://doi.org/10.1016/0009-2614(74)85031-1
|
2 |
C. Dekker, S. J. Tans, and A. R. M. Verschueren, Room temperature transistor based on a single carbon nanotube,Nature 393(6680), 49 (1998)
https://doi.org/10.1038/29954
|
3 |
B. Q. Xu and N. J. Tao, Measurements of single-molecule electromechanical properties, Science 301(5637), 1121 (2003)
https://doi.org/10.1021/ja038949j
|
4 |
S. V. Aradhya and L. Venkataraman, Single-molecule junctions beyond electronic transport, Nat. Nanotechnol. 8(6), 399 (2013)
https://doi.org/10.1038/nnano.2013.91
|
5 |
W. X. Lai, C. Zhang, and Z. S. Ma, Single molecular shuttle junction: Shot noise and decoherence, Front. Phys. 10(1), 108501 (2015)
https://doi.org/10.1007/s11467-014-0443-z
|
6 |
Z. Y. Ning, J. S. Qiao, W. Ji, and H. Guo, Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions, Front. Phys. 9(6), 780 (2014)
https://doi.org/10.1007/s11467-014-0453-x
|
7 |
W. Zhu, A. M. Guo, and Q. F. Sun, Electronic transport through tetrahedron-structured DNA-like system, Front. Phys. 9(6), 774 (2014)
https://doi.org/10.1007/s11467-013-0353-5
|
8 |
W. Ji, H. Q. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9(6), 671 (2014)
https://doi.org/10.1007/s11467-014-0458-5
|
9 |
K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene., Nature 490(7419), 192 (2012)
https://doi.org/10.1038/nature11458
|
10 |
M. C. Lemme, D. C. Bell, J. R. Williams, L. A. Stern, B. W. H. Baugher, P. Jarillo-Herrero, and C. M. Marcus, Etching of graphene devices with a helium ion beam, ACS Nano 3(9), 2674 (2009)
https://doi.org/10.1021/nn900744z
|
11 |
L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herrero, Anisotropic etching and nanoribbon formation in single-layer graphene, Nano Lett. 9(7), 2600 (2009)
https://doi.org/10.1021/nl900811r
|
12 |
P. Avouris, Z. H. Chen, and V. Perebeinos, Carbonbased electronics, Nat. Nanotechnol. 2(10), 605 (2007)
https://doi.org/10.1038/nnano.2007.300
|
13 |
L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Fieldeffect tunneling transistor based on vertical graphene heterostructures, Science 335(6071), 947 (2012)
https://doi.org/10.1126/science.1218461
|
14 |
Z. H. Qiao, J. Jung, Q. Niu, and A. H. MacDonald, Electronic highways in bilayer graphene, Nano Lett. 11(8), 3453 (2011)
https://doi.org/10.1021/nl201941f
|
15 |
X. F. Li and Y. Luo, Conductivity of carbon-based molecular junctions from ab-initiomethods, Front. Phys. 9(6), 748 (2014)
https://doi.org/10.1007/s11467-014-0424-2
|
16 |
B. Wang, J. Wang, and H. Guo, Ab initio calculation of transverse spin current in graphene nanostructures, Phys. Rev. B 79(16), 165417 (2009)
https://doi.org/10.1103/PhysRevB.79.165417
|
17 |
B. Wang, R. Chu, J. Wang, and H. Guo, Firstprinciples calculation of chiral current and quantum selfinductance of carbon nanotubes, Phys. Rev. B 80(23), 235430 (2009)
https://doi.org/10.1103/PhysRevB.80.235430
|
18 |
B. Wang, and J. Wang, First-principles investigation of transport properties through longitudinal unzipped carbon nanotubes, Phys. Rev. B 81(4), 045425 (2010)
https://doi.org/10.1103/PhysRevB.81.045425
|
19 |
J. Wang, Time-dependent quantum transport theory from non-equilibrium Green’s function approach, J. Comput. Electron. 12(3), 343 (2013)
https://doi.org/10.1007/s10825-013-0465-8
|
20 |
Y. H. Kwok, Y. Zhang, and G. H. Chen, Timedependent density functional theory for quantum transport, Front. Phys. 9(6), 698 (2014)
https://doi.org/10.1007/s11467-013-0361-5
|
21 |
L. Liao, Y. C. Lin, M. Q. Bao, R. Cheng, J. W. Bai, Y. A. Liu, Y. Q. Qu, K. L. Wang, Y. Huang, and X. F. Duan, High-speed graphene transistors with a selfaligned nanowire gate, Nature 467(7313), 305 (2010)
https://doi.org/10.1038/nature09405
|
22 |
Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. N. Sun, Y. Q. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, Wafer-Scale Graphene Integrated Circuit, Science 332(6035), 1294 (2011)
https://doi.org/10.1126/science.1204428
|
23 |
C. Sire, F. Ardiaca, S. Lepilliet, J.W. T. Seo, M. C. Hersam, G. Dambrine, H. Happy, and V. Derycke, Flexible gigahertz transistors derived from solution-based singlelayer graphene, Nano Lett. 12(3), 1184 (2012)
https://doi.org/10.1021/nl203316r
|
24 |
N. Petrone, I. Meric, J. Hone, and K. L. Shepard, Graphene field-effect transistors with gigahertzfrequency power gain on flexible substrates, Nano Lett. 13(1), 121 (2013)
https://doi.org/10.1021/nl303666m
|
25 |
J. Maciejko, J. Wang, and H. Guo, Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory, Phys. Rev. B 74(8), 085324 (2006)
https://doi.org/10.1103/PhysRevB.74.085324
|
26 |
B. Wang, Y. Xing, L. Zhang, and J. Wang, Transient dynamics of molecular devices under a steplike pulse bias, Phys. Rev. B 81(12), 121103(R) (2010)
|
27 |
Y. X. Xing, B. Wang, and J. Wang, First-principles investigation of dynamical properties of molecular devices under a steplike pulse, Phys. Rev. B 82(20), 205112 (2010)
https://doi.org/10.1103/PhysRevB.82.205112
|
28 |
L. Zhang, Y. X. Xing, and J. Wang, First-principles investigation of transient dynamics of molecular devices, Phys. Rev. B 86(15), 155438 (2012)
https://doi.org/10.1103/PhysRevB.86.155438
|
29 |
L. Zhang, J. Chen, and J. Wang, First-principles investigation of transient current in molecular devices by using complex absorbing potentials, Phys. Rev. B 87(20), 205401 (2013)
https://doi.org/10.1103/PhysRevB.87.205401
|
30 |
B. G. Wang, J. Wang, and H. Guo, Current partition: A nonequilibrium Green’s function approach, Phys. Rev. Lett. 82(2), 398 (1999)
https://doi.org/10.1103/PhysRevLett.82.398
|
31 |
M. Büttiker, A. Prêtre, and H. Thomas, Dynamic conductance and the scattering matrix of small conductors, Phys. Rev. Lett, 1993, 70(26): 4114; M. Buttiker, Dynamic conductance and quantum noise in mesoscopic conductors, J. Math. Phys. 37(10), 4793 (1996)
|
32 |
D. Kienle, M. Vaidyanathan, and F. Léonard, Selfconsistent AC quantum transport using nonequilibrium Green functions, Phys. Rev. B 81(11), 115455 (2010)
https://doi.org/10.1103/PhysRevB.81.115455
|
33 |
Y. D. Wei and J. Wang, Current conserving nonequilibrium AC transport theory, Phys. Rev. B 79(19), 195315 (2009)
https://doi.org/10.1103/PhysRevB.79.195315
|
34 |
Y. J. Yu, H. X. Zhan, Y. D. Wei, and J. Wang, Currentconserving and gauge-invariant quantum AC transport theory in the presence of phonon, Phys. Rev. B 90(7), 075407 (2014)
https://doi.org/10.1103/PhysRevB.90.075407
|
35 |
Y. J. Yu, B. Wang, and Y. D. Wei, AC response of a carbon chain under a finite frequency bias, J. Chem. Phys. 127(10), 104701 (2007)
https://doi.org/10.1063/1.2759913
|
36 |
B. Wang and J. Wang, Charge relaxation resistance at atomic scale: An ab initiocalculation, Phys. Rev. B 77(24), 245309 (2008)
https://doi.org/10.1103/PhysRevB.77.245309
|
37 |
B. Wang, Y. J. Yu, L. Zhang, Y. D. Wei, and J. Wang, Oscillation of dynamic conductance of Al-C n-Al structures: Nonequilibrium Green’s function and density functional theory study, Phys. Rev. B 79(15), 155117 (2009)
https://doi.org/10.1103/PhysRevB.79.155117
|
38 |
L. Zhang, B. Wang, and J. Wang, First-principles investigation of alternating current density distribution in molecular devices, Phys. Rev. B 86(16), 165431 (2012)
https://doi.org/10.1103/PhysRevB.86.165431
|
39 |
H. Zhang, K. S. Chan, and Z. J. Lin, The dynamical conductance of graphene tunnelling structures, Nanotechnology 22(50), 505705 (2011)
https://doi.org/10.1088/0957-4484/22/50/505705
|
40 |
C. Roland, M. B. Nardelli, J. Wang, and H. Guo, Dynamic conductance of carbon nanotubes, Phys. Rev. Lett. 84(13), 2921 (2000)
https://doi.org/10.1103/PhysRevLett.84.2921
|
41 |
Z. Z. Yu and J. Wang, Transport properties of WSe2 nanotube heterojunctions: A first-principles study, Phys. Rev. B 91(20), 205431 (2015)
https://doi.org/10.1103/PhysRevB.91.205431
|
42 |
D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, Nanoscale thermal transport, J. Appl. Phys. 93(2), 793 (2003)
https://doi.org/10.1063/1.1524305
|
43 |
J. P. Bergfield and C. A. Stafford, Thermoelectric signatures of coherent transport in single-molecule heterojunctions, Nano Lett. 9(8), 3072 (2009)
https://doi.org/10.1021/nl901554s
|
44 |
X. T. Jia and K. Xia, Electric and thermo spin transfer torques in Fe/Vacuum/Fe tunnel junction, Front. Phys. 9(6), 768 (2014)
https://doi.org/10.1007/s11467-013-0375-z
|
45 |
K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Observation of the spin Seebeck effect, Nature 455(7214), 778 (2008)
https://doi.org/10.1038/nature07321
|
46 |
K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, Spin Seebeck insulator, Nat. Mater. 9(11), 894 (2010)
https://doi.org/10.1038/nmat2856
|
47 |
H. Adachi, K. Uchida, E. Saitoh, and S. Maekawa, Theory of the spin Seebeck effect, Rep. Prog. Phys. 76(3), 036501 (2013)
https://doi.org/10.1088/0034-4885/76/3/036501
|
48 |
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
https://doi.org/10.1007/s11467-013-0340-x
|
49 |
B. Z. Rameshti and A. G. Moghaddam, Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene, Phys. Rev. B 91(15), 155407 (2015)
https://doi.org/10.1103/PhysRevB.91.155407
|
50 |
J. W. Li, B. Wang, F. M. Xu, Y. D. Wei, and J. Wang, Spin-dependent Seebeck effects in graphenebased molecular junctions, Phys. Rev. B 93(19), 195426 (2016)
https://doi.org/10.1103/PhysRevB.93.195426
|
51 |
Y. M. Zuev, W. Chang, and P. Kim, Thermoelectric and magnetothermoelectric transport measurements of graphene,Phys. Rev. Lett. 102(9), 096807 (2009)
https://doi.org/10.1103/PhysRevLett.102.096807
|
52 |
M. G. Zeng, Y. P. Feng, and G. C. Liang, Graphenebased Spin Caloritronics, Nano Lett. 11(3), 1369 (2011)
https://doi.org/10.1021/nl2000049
|
53 |
Z. Y. Zhao, X. C. Zhai, and G. J. Jin, Bipolar-unipolar transition in thermospin transport through a graphenebased transistor, Appl. Phys. Lett. 101(8), 083117 (2012)
https://doi.org/10.1063/1.4748110
|
54 |
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device, Phys. Rev. B 63(12), 121104 (2001)
https://doi.org/10.1103/PhysRevB.63.121104
|
55 |
D. R. Hamann, M. Schluter, and C. Chiang, Norm- Conserving Pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)
https://doi.org/10.1103/PhysRevLett.43.1494
|
56 |
O. Gunnarsson and B. I. Lundqvist, Exchange and correlation in atoms, molecules, and solids by the spindensity functional formalism, Phys. Rev. B 13(10), 4274 (1996)
|
57 |
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31(10), 6207 (1985)
https://doi.org/10.1103/PhysRevB.31.6207
|
58 |
T. Rejec, A. Ramsak, and J. H. Jefferson, Spindependent thermoelectric transport coefficients in near perfect quantum wires, Phys. Rev. B 65(23), 235301 (2002)
https://doi.org/10.1103/PhysRevB.65.235301
|
59 |
B. Wang, J. W. Li, Y. J. Yu, Y. D. Wei, J. Wang, and H. Guo, Giant tunnel magneto-resistance in graphene based molecular tunneling junction, Nanoscale 8(6), 3432 (2016)
https://doi.org/10.1039/C5NR06585B
|
60 |
J. Nakabayashi, D. Yamamoto, and S. Kurihara, Band selective filter in a zigzag graphene nanoribbon, Phys. Rev. Lett. 102(6), 066803 (2009)
https://doi.org/10.1103/PhysRevLett.102.066803
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|