Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (4) : 126501    https://doi.org/10.1007/s11467-016-0614-1
RESEARCH ARTICLE
Spin-resolved quantum transport in graphene-based nanojunctions
Jian-Wei Li1,Bin Wang1(),Yun-Jin Yu1,Ya-Dong Wei1,Zhi-Zhou Yu2,Yin Wang2()
1. College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
2. Department of Physics, The University of Hong Kong, Hong Kong, China
 Download: PDF(2023 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

First-principles calculations were performed to explore the spin-resolved electronic and thermoelectric transport properties of a series of graphene-nanoribbon-based nanojunctions. By flipping the magnetic moments in graphene leads from parallel to antiparallel, very large tunneling magnetoresistance can be obtained under different gate voltages for all the structures. Spin-resolved alternating-current conductance increases versus frequency for the short nanojunctions but decreases for the long nanojunctions. With increasing junction length, the behavior of the junctions changes from capacitive-like to inductive-like. Because of the opposite signs of spin-up thermopower and spin-down thermopower near the Fermi level, pure spin currents can be obtained and large figures of merit can be achieved by adjusting the gate voltage and chemical potential for all the nanojunctions.

Keywords TMR      AC conductance      thermoelectric transport      NEGF-DFT     
Corresponding Author(s): Bin Wang,Yin Wang   
Issue Date: 17 October 2016
 Cite this article:   
Jian-Wei Li,Bin Wang,Yun-Jin Yu, et al. Spin-resolved quantum transport in graphene-based nanojunctions[J]. Front. Phys. , 2017, 12(4): 126501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0614-1
https://academic.hep.com.cn/fop/EN/Y2017/V12/I4/126501
1 A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett. 29(2), 277 (1974)
https://doi.org/10.1016/0009-2614(74)85031-1
2 C. Dekker, S. J. Tans, and A. R. M. Verschueren, Room temperature transistor based on a single carbon nanotube,Nature 393(6680), 49 (1998)
https://doi.org/10.1038/29954
3 B. Q. Xu and N. J. Tao, Measurements of single-molecule electromechanical properties, Science 301(5637), 1121 (2003)
https://doi.org/10.1021/ja038949j
4 S. V. Aradhya and L. Venkataraman, Single-molecule junctions beyond electronic transport, Nat. Nanotechnol. 8(6), 399 (2013)
https://doi.org/10.1038/nnano.2013.91
5 W. X. Lai, C. Zhang, and Z. S. Ma, Single molecular shuttle junction: Shot noise and decoherence, Front. Phys. 10(1), 108501 (2015)
https://doi.org/10.1007/s11467-014-0443-z
6 Z. Y. Ning, J. S. Qiao, W. Ji, and H. Guo, Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions, Front. Phys. 9(6), 780 (2014)
https://doi.org/10.1007/s11467-014-0453-x
7 W. Zhu, A. M. Guo, and Q. F. Sun, Electronic transport through tetrahedron-structured DNA-like system, Front. Phys. 9(6), 774 (2014)
https://doi.org/10.1007/s11467-013-0353-5
8 W. Ji, H. Q. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9(6), 671 (2014)
https://doi.org/10.1007/s11467-014-0458-5
9 K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene., Nature 490(7419), 192 (2012)
https://doi.org/10.1038/nature11458
10 M. C. Lemme, D. C. Bell, J. R. Williams, L. A. Stern, B. W. H. Baugher, P. Jarillo-Herrero, and C. M. Marcus, Etching of graphene devices with a helium ion beam, ACS Nano 3(9), 2674 (2009)
https://doi.org/10.1021/nn900744z
11 L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herrero, Anisotropic etching and nanoribbon formation in single-layer graphene, Nano Lett. 9(7), 2600 (2009)
https://doi.org/10.1021/nl900811r
12 P. Avouris, Z. H. Chen, and V. Perebeinos, Carbonbased electronics, Nat. Nanotechnol. 2(10), 605 (2007)
https://doi.org/10.1038/nnano.2007.300
13 L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Fieldeffect tunneling transistor based on vertical graphene heterostructures, Science 335(6071), 947 (2012)
https://doi.org/10.1126/science.1218461
14 Z. H. Qiao, J. Jung, Q. Niu, and A. H. MacDonald, Electronic highways in bilayer graphene, Nano Lett. 11(8), 3453 (2011)
https://doi.org/10.1021/nl201941f
15 X. F. Li and Y. Luo, Conductivity of carbon-based molecular junctions from ab-initiomethods, Front. Phys. 9(6), 748 (2014)
https://doi.org/10.1007/s11467-014-0424-2
16 B. Wang, J. Wang, and H. Guo, Ab initio calculation of transverse spin current in graphene nanostructures, Phys. Rev. B 79(16), 165417 (2009)
https://doi.org/10.1103/PhysRevB.79.165417
17 B. Wang, R. Chu, J. Wang, and H. Guo, Firstprinciples calculation of chiral current and quantum selfinductance of carbon nanotubes, Phys. Rev. B 80(23), 235430 (2009)
https://doi.org/10.1103/PhysRevB.80.235430
18 B. Wang, and J. Wang, First-principles investigation of transport properties through longitudinal unzipped carbon nanotubes, Phys. Rev. B 81(4), 045425 (2010)
https://doi.org/10.1103/PhysRevB.81.045425
19 J. Wang, Time-dependent quantum transport theory from non-equilibrium Green’s function approach, J. Comput. Electron. 12(3), 343 (2013)
https://doi.org/10.1007/s10825-013-0465-8
20 Y. H. Kwok, Y. Zhang, and G. H. Chen, Timedependent density functional theory for quantum transport, Front. Phys. 9(6), 698 (2014)
https://doi.org/10.1007/s11467-013-0361-5
21 L. Liao, Y. C. Lin, M. Q. Bao, R. Cheng, J. W. Bai, Y. A. Liu, Y. Q. Qu, K. L. Wang, Y. Huang, and X. F. Duan, High-speed graphene transistors with a selfaligned nanowire gate, Nature 467(7313), 305 (2010)
https://doi.org/10.1038/nature09405
22 Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. N. Sun, Y. Q. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, Wafer-Scale Graphene Integrated Circuit, Science 332(6035), 1294 (2011)
https://doi.org/10.1126/science.1204428
23 C. Sire, F. Ardiaca, S. Lepilliet, J.W. T. Seo, M. C. Hersam, G. Dambrine, H. Happy, and V. Derycke, Flexible gigahertz transistors derived from solution-based singlelayer graphene, Nano Lett. 12(3), 1184 (2012)
https://doi.org/10.1021/nl203316r
24 N. Petrone, I. Meric, J. Hone, and K. L. Shepard, Graphene field-effect transistors with gigahertzfrequency power gain on flexible substrates, Nano Lett. 13(1), 121 (2013)
https://doi.org/10.1021/nl303666m
25 J. Maciejko, J. Wang, and H. Guo, Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory, Phys. Rev. B 74(8), 085324 (2006)
https://doi.org/10.1103/PhysRevB.74.085324
26 B. Wang, Y. Xing, L. Zhang, and J. Wang, Transient dynamics of molecular devices under a steplike pulse bias, Phys. Rev. B 81(12), 121103(R) (2010)
27 Y. X. Xing, B. Wang, and J. Wang, First-principles investigation of dynamical properties of molecular devices under a steplike pulse, Phys. Rev. B 82(20), 205112 (2010)
https://doi.org/10.1103/PhysRevB.82.205112
28 L. Zhang, Y. X. Xing, and J. Wang, First-principles investigation of transient dynamics of molecular devices, Phys. Rev. B 86(15), 155438 (2012)
https://doi.org/10.1103/PhysRevB.86.155438
29 L. Zhang, J. Chen, and J. Wang, First-principles investigation of transient current in molecular devices by using complex absorbing potentials, Phys. Rev. B 87(20), 205401 (2013)
https://doi.org/10.1103/PhysRevB.87.205401
30 B. G. Wang, J. Wang, and H. Guo, Current partition: A nonequilibrium Green’s function approach, Phys. Rev. Lett. 82(2), 398 (1999)
https://doi.org/10.1103/PhysRevLett.82.398
31 M. Büttiker, A. Prêtre, and H. Thomas, Dynamic conductance and the scattering matrix of small conductors, Phys. Rev. Lett, 1993, 70(26): 4114; M. Buttiker, Dynamic conductance and quantum noise in mesoscopic conductors, J. Math. Phys. 37(10), 4793 (1996)
32 D. Kienle, M. Vaidyanathan, and F. Léonard, Selfconsistent AC quantum transport using nonequilibrium Green functions, Phys. Rev. B 81(11), 115455 (2010)
https://doi.org/10.1103/PhysRevB.81.115455
33 Y. D. Wei and J. Wang, Current conserving nonequilibrium AC transport theory, Phys. Rev. B 79(19), 195315 (2009)
https://doi.org/10.1103/PhysRevB.79.195315
34 Y. J. Yu, H. X. Zhan, Y. D. Wei, and J. Wang, Currentconserving and gauge-invariant quantum AC transport theory in the presence of phonon, Phys. Rev. B 90(7), 075407 (2014)
https://doi.org/10.1103/PhysRevB.90.075407
35 Y. J. Yu, B. Wang, and Y. D. Wei, AC response of a carbon chain under a finite frequency bias, J. Chem. Phys. 127(10), 104701 (2007)
https://doi.org/10.1063/1.2759913
36 B. Wang and J. Wang, Charge relaxation resistance at atomic scale: An ab initiocalculation, Phys. Rev. B 77(24), 245309 (2008)
https://doi.org/10.1103/PhysRevB.77.245309
37 B. Wang, Y. J. Yu, L. Zhang, Y. D. Wei, and J. Wang, Oscillation of dynamic conductance of Al-C n-Al structures: Nonequilibrium Green’s function and density functional theory study, Phys. Rev. B 79(15), 155117 (2009)
https://doi.org/10.1103/PhysRevB.79.155117
38 L. Zhang, B. Wang, and J. Wang, First-principles investigation of alternating current density distribution in molecular devices, Phys. Rev. B 86(16), 165431 (2012)
https://doi.org/10.1103/PhysRevB.86.165431
39 H. Zhang, K. S. Chan, and Z. J. Lin, The dynamical conductance of graphene tunnelling structures, Nanotechnology 22(50), 505705 (2011)
https://doi.org/10.1088/0957-4484/22/50/505705
40 C. Roland, M. B. Nardelli, J. Wang, and H. Guo, Dynamic conductance of carbon nanotubes, Phys. Rev. Lett. 84(13), 2921 (2000)
https://doi.org/10.1103/PhysRevLett.84.2921
41 Z. Z. Yu and J. Wang, Transport properties of WSe2 nanotube heterojunctions: A first-principles study, Phys. Rev. B 91(20), 205431 (2015)
https://doi.org/10.1103/PhysRevB.91.205431
42 D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, Nanoscale thermal transport, J. Appl. Phys. 93(2), 793 (2003)
https://doi.org/10.1063/1.1524305
43 J. P. Bergfield and C. A. Stafford, Thermoelectric signatures of coherent transport in single-molecule heterojunctions, Nano Lett. 9(8), 3072 (2009)
https://doi.org/10.1021/nl901554s
44 X. T. Jia and K. Xia, Electric and thermo spin transfer torques in Fe/Vacuum/Fe tunnel junction, Front. Phys. 9(6), 768 (2014)
https://doi.org/10.1007/s11467-013-0375-z
45 K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Observation of the spin Seebeck effect, Nature 455(7214), 778 (2008)
https://doi.org/10.1038/nature07321
46 K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, Spin Seebeck insulator, Nat. Mater. 9(11), 894 (2010)
https://doi.org/10.1038/nmat2856
47 H. Adachi, K. Uchida, E. Saitoh, and S. Maekawa, Theory of the spin Seebeck effect, Rep. Prog. Phys. 76(3), 036501 (2013)
https://doi.org/10.1088/0034-4885/76/3/036501
48 J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
https://doi.org/10.1007/s11467-013-0340-x
49 B. Z. Rameshti and A. G. Moghaddam, Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene, Phys. Rev. B 91(15), 155407 (2015)
https://doi.org/10.1103/PhysRevB.91.155407
50 J. W. Li, B. Wang, F. M. Xu, Y. D. Wei, and J. Wang, Spin-dependent Seebeck effects in graphenebased molecular junctions, Phys. Rev. B 93(19), 195426 (2016)
https://doi.org/10.1103/PhysRevB.93.195426
51 Y. M. Zuev, W. Chang, and P. Kim, Thermoelectric and magnetothermoelectric transport measurements of graphene,Phys. Rev. Lett. 102(9), 096807 (2009)
https://doi.org/10.1103/PhysRevLett.102.096807
52 M. G. Zeng, Y. P. Feng, and G. C. Liang, Graphenebased Spin Caloritronics, Nano Lett. 11(3), 1369 (2011)
https://doi.org/10.1021/nl2000049
53 Z. Y. Zhao, X. C. Zhai, and G. J. Jin, Bipolar-unipolar transition in thermospin transport through a graphenebased transistor, Appl. Phys. Lett. 101(8), 083117 (2012)
https://doi.org/10.1063/1.4748110
54 J. Taylor, H. Guo, and J. Wang, Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device, Phys. Rev. B 63(12), 121104 (2001)
https://doi.org/10.1103/PhysRevB.63.121104
55 D. R. Hamann, M. Schluter, and C. Chiang, Norm- Conserving Pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)
https://doi.org/10.1103/PhysRevLett.43.1494
56 O. Gunnarsson and B. I. Lundqvist, Exchange and correlation in atoms, molecules, and solids by the spindensity functional formalism, Phys. Rev. B 13(10), 4274 (1996)
57 M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31(10), 6207 (1985)
https://doi.org/10.1103/PhysRevB.31.6207
58 T. Rejec, A. Ramsak, and J. H. Jefferson, Spindependent thermoelectric transport coefficients in near perfect quantum wires, Phys. Rev. B 65(23), 235301 (2002)
https://doi.org/10.1103/PhysRevB.65.235301
59 B. Wang, J. W. Li, Y. J. Yu, Y. D. Wei, J. Wang, and H. Guo, Giant tunnel magneto-resistance in graphene based molecular tunneling junction, Nanoscale 8(6), 3432 (2016)
https://doi.org/10.1039/C5NR06585B
60 J. Nakabayashi, D. Yamamoto, and S. Kurihara, Band selective filter in a zigzag graphene nanoribbon, Phys. Rev. Lett. 102(6), 066803 (2009)
https://doi.org/10.1103/PhysRevLett.102.066803
[1] Qiang Wang, Jian-Wei Li, Bin Wang, Yi-Hang Nie. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions[J]. Front. Phys. , 2018, 13(3): 138501-.
[2] Jianing Zhuang,Yin Wang,Yan Zhou,Jian Wang,Hong Guo. Impurity-limited quantum transport variability in magnetic tunnel junctions[J]. Front. Phys. , 2017, 12(4): 127304-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed