|
|
A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance |
Qingquan Kong1, Xuguang An1, Lin Huang1, Xiaolian Wang1, Wei Feng1, Siyao Qiu2, Qingyuan Wang1( ), Chenghua Sun2,3( ) |
1. School of Mechanical Engineering, Chengdu University, Chengdu 610106, China 2. College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China 3. Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia |
|
|
Abstract Heterojunction structure has been extensively employed for the design of novel catalysts. In the present study, density functional theory was utilized to investigate the electronic structure and hydrogen evolution performance of Ti3C2O2 MXene quantum dots/graphene (QDs/G) heterostructure. Results show that a slight distortion can be observed in graphene after hybriding with QDs, due to which the electronic structure of QDs have been changed. Associated with such QDs-graphene interaction, the catalytic activity of Ti3C2O2 QDs has been optimized, leading to excellent HER catalytic performance.
|
Keywords
MXenes
quantum dots
density functional theory (DFT)
hydrogen evolution reaction (HER)
|
Corresponding Author(s):
Qingyuan Wang,Chenghua Sun
|
Issue Date: 18 June 2021
|
|
1 |
J. A. Turner, Sustainable hydrogen production, Science 305(5686), 972 (2004)
https://doi.org/10.1126/science.1103197
|
2 |
S. Bhavsar, M. Najera, R. Solunke, and G. Veser, Chemical looping: To combustion and beyond, Catal. Today 228(0), 22896 (2014)
https://doi.org/10.1016/j.cattod.2013.12.025
|
3 |
P. Li, R. Zhao, H. Chen, H. Wang, P. Wei, H. Huang, Q. Liu, T. Li, X. Shi, Y. Zhang, M. Liu, and X. Sun, Recent advances in the development of water oxidation electrocatalysts at mild pH, Small 15(13), 1805103 (2019)
https://doi.org/10.1002/smll.201805103
|
4 |
D. Li, J. Shi, and C. Li, Transition-metal-based electrocatalysts as cocatalysts for photoelectrochemical water splitting: A mini review, Small 14(23), 1704179 (2018)
https://doi.org/10.1002/smll.201704179
|
5 |
S. Wang, P. Chen, Y. Bai, J. H. Yun, G. Liu, and L. Wang, New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting, Adv. Mater. 30(20), 1800486 (2018)
https://doi.org/10.1002/adma.201800486
|
6 |
Y. Zheng, Y. Jiao, M. Jaroniec, and S. Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory, Angew. Chem. Int. Ed. 54(1), 52 (2015)
https://doi.org/10.1002/anie.201407031
|
7 |
A. Eftekhari, Electrocatalysts for hydrogen evolution reaction, Int. J. Hydrogen Energy 42(16), 11053 (2017)
https://doi.org/10.1016/j.ijhydene.2017.02.125
|
8 |
Z. Tang, S. Shen, J. Zhuang, and X. Wang, Noble-metalpromoted three-dimensional macroassembly of singlelayered graphene oxide, Angew. Chem. Int. Ed. 49(27), 4603 (2010)
https://doi.org/10.1002/anie.201000270
|
9 |
M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992 (2014)
https://doi.org/10.1002/adma.201304138
|
10 |
J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)
https://doi.org/10.1007/s11467-015-0493-x
|
11 |
Z. W. Seh, K. D. Fredrickson, B. Anasori, J. Kibsgaard, A. L. Strickler, M. R. Lukatskaya, Y. Gogotsi, T. F. Jaramillo, and A. Vojvodic, Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution, ACS Energy Lett. 1(3), 589 (2016)
https://doi.org/10.1021/acsenergylett.6b00247
|
12 |
G. Gao, A. P. O’ Mullane, and A. Du, 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction, ACS Catal. 7(1), 494 (2017)
https://doi.org/10.1021/acscatal.6b02754
|
13 |
Y. Li, Z. Yin, G. Ji, Z. Liang, Ya. Xue, Y. Guo, J. Tian, X. Wang, and H. Cui, 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity, Appl. Catal. B 246(5), 12 (2019)
https://doi.org/10.1016/j.apcatb.2019.01.051
|
14 |
Y. Li, L. Ding, S. Yin, Z. Liang, Y. Xue, X. Wang, H. Cui, and J. Tian, Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T WS2 as Co catalysts, Nano-Micro Lett. 12(1), 6 (2020)
https://doi.org/10.1007/s40820-019-0339-0
|
15 |
Y. Li, L. Ding, Z. Liang, Y. Xue, H. Cui, and J. Tian, Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2, Chem. Eng. J. 383(1), 123178 (2020)
https://doi.org/10.1016/j.cej.2019.123178
|
16 |
L. M. Azofra, N. Li, D. R. MacFarlane, and C. Sun, Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia, Energy Environ. Sci. 9(8), 2545 (2016)
https://doi.org/10.1039/C6EE01800A
|
17 |
N. Li, X. Chen, W. J. Ong, D. R. MacFarlane, X. Zhao, A. K. Cheetham, and C. Sun, Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes), ACS Nano 11(11), 10825 (2017)
https://doi.org/10.1021/acsnano.7b03738
|
18 |
X. Chen, Z. Kong, N. Li, X. Zhao, and C. Sun, Proposing the prospects of Ti3CN transition metal carbides (MXenes) as anodes of Li-ion batteries: A DFT study, Phys. Chem. Chem. Phys. 18(48), 32937 (2016)
https://doi.org/10.1039/C6CP06018H
|
19 |
C. Ling, L. Shi, Y. Ouyang, and J. Wang, Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor, Chem. Mater. 28(24), 9026 (2016)
https://doi.org/10.1021/acs.chemmater.6b03972
|
20 |
Z. Guo, Z. Jian, and Z. Sun, New two-dimensional transition metal borides for Li ion battery and electrocatalysis, J. Mater. Chem. A 5(45), 23530 (2017)
https://doi.org/10.1039/C7TA08665B
|
21 |
M. Pandey and K. S. Thygesen, Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study, J. Phys. Chem. C 121(25), 13593 (2017)
https://doi.org/10.1021/acs.jpcc.7b05270
|
22 |
Y. W. Cheng, J. H. Dai, Y. M. Zhang, and Y. Song, Twodimensional, ordered, double transition metal carbides (MXenes): A new family of promising catalysts for the hydrogen evolution reaction, J. Phys. Chem. C 122(49), 28113 (2018)
https://doi.org/10.1021/acs.jpcc.8b08914
|
23 |
B. Huang, N. Zhou, X. Chen, W. J. Ong, and N. Li, Insights into the electrocatalytic hydrogen evolution reaction mechanism on two-dimensional transition-metal carbonitrides (MXene), Chemistry 24(69), 18479 (2018)
https://doi.org/10.1002/chem.201804686
|
24 |
H. Zhang, L. Yu, T. Chen, W. Zhou, and X. W. D. Lou, Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution, Adv. Funct. Mater. 28(51), 1807086 (2018)
https://doi.org/10.1002/adfm.201807086
|
25 |
Y. Cheng, L. Wang, Y. Song, and Y. Zhang, Deep insights into the exfoliation properties of MAX to MXenes and the hydrogen evolution performances of 2D MXenes, J. Mater. Chem. A 7(26), 15862 (2019)
https://doi.org/10.1039/C9TA03859K
|
26 |
Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li, B. Tian, and C. Su, Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution, Chem- SusChem 12(7), 1368 (2019)
https://doi.org/10.1002/cssc.201803032
|
27 |
Z. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian, and P. Chen, Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots, Adv. Funct. Mater. 29(2), 1806500 (2019)
https://doi.org/10.1002/adfm.201806500
|
28 |
X. Yu, X. Cai, H. Cui, S. W. Lee, X. F. Yu, and B. Liu, Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy, Nanoscale 9(45), 17859 (2017)
https://doi.org/10.1039/C7NR05997C
|
29 |
Z. Jin, C. Liu, Z. Liu, J. Han, Y. Fang, Y. Han, Y. Niu, Y. Wu, C. Sun, and Y. Xu, Rational design of hydroxylrich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction, Adv. Energy Mater. 10(22), 2000797 (2020)
https://doi.org/10.1002/aenm.202000797
|
30 |
C. Tsai, F. Abild-Pedersen, and J. K. Nørskov, Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions, Nano Lett. 14(3), 1381 (2014)
https://doi.org/10.1021/nl404444k
|
31 |
Y. Li, L. Ding, Y. Guo, Z. Liang, H. Cui, and J. Tian, Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots, Acs Appl. Mater. Inter. 11(44), 41440 (2019)
https://doi.org/10.1021/acsami.9b14985
|
32 |
F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite Sscheme photocatalyst with enhanced CO2 reduction activity, Applied Catalysis B 272(0), 119006(2020)
https://doi.org/10.1016/j.apcatb.2020.119006
|
33 |
Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)
https://doi.org/10.1007/s11467-020-0980-6
|
34 |
Q. Yu, Y. Luo, S. Qiu, Q. Li, Z. Cai, Z. Zhang, J. Liu, C. Sun, and B. Liu, Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering, ACS Nano 13(10), 11874 (2019)
https://doi.org/10.1021/acsnano.9b05933
|
35 |
K. Chu, Y. Liu, Y. Li, H. Zhang, and Y. Tian, Efficient electrocatalytic N2 reduction on CoO quantum dots, J. Mater. Chem. A 7(9), 4389 (2019)
https://doi.org/10.1039/C9TA00016J
|
36 |
H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu, P. Zhang, B. Xu, F. Wu, and R. Chen, Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries, Nano-Micro Lett. 11(1), 65 (2019)
https://doi.org/10.1007/s40820-019-0296-7
|
37 |
X. Chen, X. Sun, W. Xu, G. Pan, D. Zhou, J. Zhu, H. Wang, X. Bai, B. Dong, and H. Song, Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor, Nanoscale 10(3), 1111 (2018)
https://doi.org/10.1039/C7NR06958H
|
38 |
Y. Qin, Z. Wang, N. Liu, Y. Sun, D. Han, Y. Liu, L. Niu, and Z. Kang, High-yield fabrication of Ti3C2Tx MXene quantum dots and their electrochemiluminescence behavior, Nanoscale 10(29), 14000 (2018)
https://doi.org/10.1039/C8NR03903H
|
39 |
Q. Xu, L. Ding, Y. Wen, W. Yang, H. Zhou, X. Chen, J. Street, A. Zhou, W. J. Ong, and N. Li, High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots, J. Mater. Chem. C 6(24), 6360 (2018)
https://doi.org/10.1039/C8TC02156B
|
40 |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
41 |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
|
42 |
J. P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54(23), 16533 (1996)
https://doi.org/10.1103/PhysRevB.54.16533
|
43 |
S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem. 25(12), 1463 (2004)
https://doi.org/10.1002/jcc.20078
|
44 |
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
https://doi.org/10.1002/jcc.20495
|
45 |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
|
46 |
V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets, J. Phys. Chem. A 115(21), 5461 (2011)
https://doi.org/10.1021/jp202489s
|
47 |
S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, LOBSTER: A tool to extract chemical bonding from plane-wave based DFT, J. Comput. Chem. 37(11), 1030 (2016)
https://doi.org/10.1002/jcc.24300
|
48 |
J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152(3), J23 (2005)
https://doi.org/10.1149/1.1856988
|
49 |
Z. Shen, X. Fan, S. Ma, Y. An, D. Yang, N. Guo, Z. Luo, and Y. Hu, 3d transitional-metal single atom catalysis toward hydrogen evolution reaction on MXenes supports, Int. J. Hydrogen Energy 45(28), 14396 (2020)
https://doi.org/10.1016/j.ijhydene.2020.03.174
|
50 |
L. Dong, R. R. S. Gari, Z. Li, M. M. Craig, and S. Hou, Graphene-supported platinum and platinum– ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon 48(3), 781 (2010)
https://doi.org/10.1016/j.carbon.2009.10.027
|
51 |
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 133(19), 7296 (2011)
https://doi.org/10.1021/ja201269b
|
52 |
K. Chu, Y. Liu, J. Wang, and H. Zhang, NiO nanodots on graphene for efficient electrochemical N2 reduction to NH3,ACS Appl. Energy Mater. 2(3), 2288 (2019)
https://doi.org/10.1021/acsaem.9b00102
|
53 |
X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, X. Sun, and T. Li, TiO2 nanoparticles–reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions, J. Mater. Chem. A 6(36), 17303 (2018)
https://doi.org/10.1039/C8TA05627G
|
54 |
L. B. Drissi, E. H. Saidi, M. Bousmina, and O. Fassi- Fehri, DFT investigations of the hydrogenation effect on silicene/graphene hybrids, J. Phys.: Condens. Matter 24(48), 485502 (2012)
https://doi.org/10.1088/0953-8984/24/48/485502
|
55 |
Y. Xie and P. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers, Phys. Rev. B 87(23), (2013)
https://doi.org/10.1103/PhysRevB.87.235441
|
56 |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)
https://doi.org/10.1002/adma.201102306
|
57 |
S. Steinberg and R. Dronskowski, The crystal orbital Hamilton population (COHP) method as a tool to visualize and analyze chemical bonding in intermetallic compounds, Crystals (Basel) 8(5), 225 (2018)
https://doi.org/10.3390/cryst8050225
|
58 |
J. Ran, G. Gao, F. T. Li, T. Y. Ma, A. Du, and S. Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun. 8(1), 13907 (2017)
https://doi.org/10.1038/ncomms13907
|
59 |
Q. Liu, H. Zhao, M. Jiang, Q. Kang, W. Zhou, P. Wang, and F. Zhou, Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires, J. Mater. Chem. A 8(27), 13638 (2020)
https://doi.org/10.1039/C9TA14256H
|
60 |
X. Luo, Q. Shao, Y. Pi, and X. Huang, Trimetallic molybdate nanobelts as active and stable electrocatalysts for the oxygen evolution reaction, ACS Catal. 9(2), 1013 (2019)
https://doi.org/10.1021/acscatal.8b04521
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|