Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (5) : 53506    https://doi.org/10.1007/s11467-021-1066-9
RESEARCH ARTICLE
A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance
Qingquan Kong1, Xuguang An1, Lin Huang1, Xiaolian Wang1, Wei Feng1, Siyao Qiu2, Qingyuan Wang1(), Chenghua Sun2,3()
1. School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
2. College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
3. Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
 Download: PDF(1942 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heterojunction structure has been extensively employed for the design of novel catalysts. In the present study, density functional theory was utilized to investigate the electronic structure and hydrogen evolution performance of Ti3C2O2 MXene quantum dots/graphene (QDs/G) heterostructure. Results show that a slight distortion can be observed in graphene after hybriding with QDs, due to which the electronic structure of QDs have been changed. Associated with such QDs-graphene interaction, the catalytic activity of Ti3C2O2 QDs has been optimized, leading to excellent HER catalytic performance.

Keywords MXenes      quantum dots      density functional theory (DFT)      hydrogen evolution reaction (HER)     
Corresponding Author(s): Qingyuan Wang,Chenghua Sun   
Issue Date: 18 June 2021
 Cite this article:   
Qingquan Kong,Xuguang An,Lin Huang, et al. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance[J]. Front. Phys. , 2021, 16(5): 53506.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1066-9
https://academic.hep.com.cn/fop/EN/Y2021/V16/I5/53506
1 J. A. Turner, Sustainable hydrogen production, Science 305(5686), 972 (2004)
https://doi.org/10.1126/science.1103197
2 S. Bhavsar, M. Najera, R. Solunke, and G. Veser, Chemical looping: To combustion and beyond, Catal. Today 228(0), 22896 (2014)
https://doi.org/10.1016/j.cattod.2013.12.025
3 P. Li, R. Zhao, H. Chen, H. Wang, P. Wei, H. Huang, Q. Liu, T. Li, X. Shi, Y. Zhang, M. Liu, and X. Sun, Recent advances in the development of water oxidation electrocatalysts at mild pH, Small 15(13), 1805103 (2019)
https://doi.org/10.1002/smll.201805103
4 D. Li, J. Shi, and C. Li, Transition-metal-based electrocatalysts as cocatalysts for photoelectrochemical water splitting: A mini review, Small 14(23), 1704179 (2018)
https://doi.org/10.1002/smll.201704179
5 S. Wang, P. Chen, Y. Bai, J. H. Yun, G. Liu, and L. Wang, New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting, Adv. Mater. 30(20), 1800486 (2018)
https://doi.org/10.1002/adma.201800486
6 Y. Zheng, Y. Jiao, M. Jaroniec, and S. Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory, Angew. Chem. Int. Ed. 54(1), 52 (2015)
https://doi.org/10.1002/anie.201407031
7 A. Eftekhari, Electrocatalysts for hydrogen evolution reaction, Int. J. Hydrogen Energy 42(16), 11053 (2017)
https://doi.org/10.1016/j.ijhydene.2017.02.125
8 Z. Tang, S. Shen, J. Zhuang, and X. Wang, Noble-metalpromoted three-dimensional macroassembly of singlelayered graphene oxide, Angew. Chem. Int. Ed. 49(27), 4603 (2010)
https://doi.org/10.1002/anie.201000270
9 M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992 (2014)
https://doi.org/10.1002/adma.201304138
10 J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)
https://doi.org/10.1007/s11467-015-0493-x
11 Z. W. Seh, K. D. Fredrickson, B. Anasori, J. Kibsgaard, A. L. Strickler, M. R. Lukatskaya, Y. Gogotsi, T. F. Jaramillo, and A. Vojvodic, Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution, ACS Energy Lett. 1(3), 589 (2016)
https://doi.org/10.1021/acsenergylett.6b00247
12 G. Gao, A. P. O’ Mullane, and A. Du, 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction, ACS Catal. 7(1), 494 (2017)
https://doi.org/10.1021/acscatal.6b02754
13 Y. Li, Z. Yin, G. Ji, Z. Liang, Ya. Xue, Y. Guo, J. Tian, X. Wang, and H. Cui, 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity, Appl. Catal. B 246(5), 12 (2019)
https://doi.org/10.1016/j.apcatb.2019.01.051
14 Y. Li, L. Ding, S. Yin, Z. Liang, Y. Xue, X. Wang, H. Cui, and J. Tian, Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T WS2 as Co catalysts, Nano-Micro Lett. 12(1), 6 (2020)
https://doi.org/10.1007/s40820-019-0339-0
15 Y. Li, L. Ding, Z. Liang, Y. Xue, H. Cui, and J. Tian, Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2, Chem. Eng. J. 383(1), 123178 (2020)
https://doi.org/10.1016/j.cej.2019.123178
16 L. M. Azofra, N. Li, D. R. MacFarlane, and C. Sun, Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia, Energy Environ. Sci. 9(8), 2545 (2016)
https://doi.org/10.1039/C6EE01800A
17 N. Li, X. Chen, W. J. Ong, D. R. MacFarlane, X. Zhao, A. K. Cheetham, and C. Sun, Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes), ACS Nano 11(11), 10825 (2017)
https://doi.org/10.1021/acsnano.7b03738
18 X. Chen, Z. Kong, N. Li, X. Zhao, and C. Sun, Proposing the prospects of Ti3CN transition metal carbides (MXenes) as anodes of Li-ion batteries: A DFT study, Phys. Chem. Chem. Phys. 18(48), 32937 (2016)
https://doi.org/10.1039/C6CP06018H
19 C. Ling, L. Shi, Y. Ouyang, and J. Wang, Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor, Chem. Mater. 28(24), 9026 (2016)
https://doi.org/10.1021/acs.chemmater.6b03972
20 Z. Guo, Z. Jian, and Z. Sun, New two-dimensional transition metal borides for Li ion battery and electrocatalysis, J. Mater. Chem. A 5(45), 23530 (2017)
https://doi.org/10.1039/C7TA08665B
21 M. Pandey and K. S. Thygesen, Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study, J. Phys. Chem. C 121(25), 13593 (2017)
https://doi.org/10.1021/acs.jpcc.7b05270
22 Y. W. Cheng, J. H. Dai, Y. M. Zhang, and Y. Song, Twodimensional, ordered, double transition metal carbides (MXenes): A new family of promising catalysts for the hydrogen evolution reaction, J. Phys. Chem. C 122(49), 28113 (2018)
https://doi.org/10.1021/acs.jpcc.8b08914
23 B. Huang, N. Zhou, X. Chen, W. J. Ong, and N. Li, Insights into the electrocatalytic hydrogen evolution reaction mechanism on two-dimensional transition-metal carbonitrides (MXene), Chemistry 24(69), 18479 (2018)
https://doi.org/10.1002/chem.201804686
24 H. Zhang, L. Yu, T. Chen, W. Zhou, and X. W. D. Lou, Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution, Adv. Funct. Mater. 28(51), 1807086 (2018)
https://doi.org/10.1002/adfm.201807086
25 Y. Cheng, L. Wang, Y. Song, and Y. Zhang, Deep insights into the exfoliation properties of MAX to MXenes and the hydrogen evolution performances of 2D MXenes, J. Mater. Chem. A 7(26), 15862 (2019)
https://doi.org/10.1039/C9TA03859K
26 Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li, B. Tian, and C. Su, Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution, Chem- SusChem 12(7), 1368 (2019)
https://doi.org/10.1002/cssc.201803032
27 Z. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian, and P. Chen, Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots, Adv. Funct. Mater. 29(2), 1806500 (2019)
https://doi.org/10.1002/adfm.201806500
28 X. Yu, X. Cai, H. Cui, S. W. Lee, X. F. Yu, and B. Liu, Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy, Nanoscale 9(45), 17859 (2017)
https://doi.org/10.1039/C7NR05997C
29 Z. Jin, C. Liu, Z. Liu, J. Han, Y. Fang, Y. Han, Y. Niu, Y. Wu, C. Sun, and Y. Xu, Rational design of hydroxylrich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction, Adv. Energy Mater. 10(22), 2000797 (2020)
https://doi.org/10.1002/aenm.202000797
30 C. Tsai, F. Abild-Pedersen, and J. K. Nørskov, Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions, Nano Lett. 14(3), 1381 (2014)
https://doi.org/10.1021/nl404444k
31 Y. Li, L. Ding, Y. Guo, Z. Liang, H. Cui, and J. Tian, Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots, Acs Appl. Mater. Inter. 11(44), 41440 (2019)
https://doi.org/10.1021/acsami.9b14985
32 F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite Sscheme photocatalyst with enhanced CO2 reduction activity, Applied Catalysis B 272(0), 119006(2020)
https://doi.org/10.1016/j.apcatb.2020.119006
33 Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)
https://doi.org/10.1007/s11467-020-0980-6
34 Q. Yu, Y. Luo, S. Qiu, Q. Li, Z. Cai, Z. Zhang, J. Liu, C. Sun, and B. Liu, Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering, ACS Nano 13(10), 11874 (2019)
https://doi.org/10.1021/acsnano.9b05933
35 K. Chu, Y. Liu, Y. Li, H. Zhang, and Y. Tian, Efficient electrocatalytic N2 reduction on CoO quantum dots, J. Mater. Chem. A 7(9), 4389 (2019)
https://doi.org/10.1039/C9TA00016J
36 H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu, P. Zhang, B. Xu, F. Wu, and R. Chen, Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries, Nano-Micro Lett. 11(1), 65 (2019)
https://doi.org/10.1007/s40820-019-0296-7
37 X. Chen, X. Sun, W. Xu, G. Pan, D. Zhou, J. Zhu, H. Wang, X. Bai, B. Dong, and H. Song, Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor, Nanoscale 10(3), 1111 (2018)
https://doi.org/10.1039/C7NR06958H
38 Y. Qin, Z. Wang, N. Liu, Y. Sun, D. Han, Y. Liu, L. Niu, and Z. Kang, High-yield fabrication of Ti3C2Tx MXene quantum dots and their electrochemiluminescence behavior, Nanoscale 10(29), 14000 (2018)
https://doi.org/10.1039/C8NR03903H
39 Q. Xu, L. Ding, Y. Wen, W. Yang, H. Zhou, X. Chen, J. Street, A. Zhou, W. J. Ong, and N. Li, High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots, J. Mater. Chem. C 6(24), 6360 (2018)
https://doi.org/10.1039/C8TC02156B
40 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
41 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
42 J. P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54(23), 16533 (1996)
https://doi.org/10.1103/PhysRevB.54.16533
43 S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem. 25(12), 1463 (2004)
https://doi.org/10.1002/jcc.20078
44 S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
https://doi.org/10.1002/jcc.20495
45 J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
46 V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets, J. Phys. Chem. A 115(21), 5461 (2011)
https://doi.org/10.1021/jp202489s
47 S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, LOBSTER: A tool to extract chemical bonding from plane-wave based DFT, J. Comput. Chem. 37(11), 1030 (2016)
https://doi.org/10.1002/jcc.24300
48 J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152(3), J23 (2005)
https://doi.org/10.1149/1.1856988
49 Z. Shen, X. Fan, S. Ma, Y. An, D. Yang, N. Guo, Z. Luo, and Y. Hu, 3d transitional-metal single atom catalysis toward hydrogen evolution reaction on MXenes supports, Int. J. Hydrogen Energy 45(28), 14396 (2020)
https://doi.org/10.1016/j.ijhydene.2020.03.174
50 L. Dong, R. R. S. Gari, Z. Li, M. M. Craig, and S. Hou, Graphene-supported platinum and platinum– ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon 48(3), 781 (2010)
https://doi.org/10.1016/j.carbon.2009.10.027
51 Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 133(19), 7296 (2011)
https://doi.org/10.1021/ja201269b
52 K. Chu, Y. Liu, J. Wang, and H. Zhang, NiO nanodots on graphene for efficient electrochemical N2 reduction to NH3,ACS Appl. Energy Mater. 2(3), 2288 (2019)
https://doi.org/10.1021/acsaem.9b00102
53 X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, X. Sun, and T. Li, TiO2 nanoparticles–reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions, J. Mater. Chem. A 6(36), 17303 (2018)
https://doi.org/10.1039/C8TA05627G
54 L. B. Drissi, E. H. Saidi, M. Bousmina, and O. Fassi- Fehri, DFT investigations of the hydrogenation effect on silicene/graphene hybrids, J. Phys.: Condens. Matter 24(48), 485502 (2012)
https://doi.org/10.1088/0953-8984/24/48/485502
55 Y. Xie and P. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers, Phys. Rev. B 87(23), (2013)
https://doi.org/10.1103/PhysRevB.87.235441
56 M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)
https://doi.org/10.1002/adma.201102306
57 S. Steinberg and R. Dronskowski, The crystal orbital Hamilton population (COHP) method as a tool to visualize and analyze chemical bonding in intermetallic compounds, Crystals (Basel) 8(5), 225 (2018)
https://doi.org/10.3390/cryst8050225
58 J. Ran, G. Gao, F. T. Li, T. Y. Ma, A. Du, and S. Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun. 8(1), 13907 (2017)
https://doi.org/10.1038/ncomms13907
59 Q. Liu, H. Zhao, M. Jiang, Q. Kang, W. Zhou, P. Wang, and F. Zhou, Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires, J. Mater. Chem. A 8(27), 13638 (2020)
https://doi.org/10.1039/C9TA14256H
60 X. Luo, Q. Shao, Y. Pi, and X. Huang, Trimetallic molybdate nanobelts as active and stable electrocatalysts for the oxygen evolution reaction, ACS Catal. 9(2), 1013 (2019)
https://doi.org/10.1021/acscatal.8b04521
[1] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[2] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
[3] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[4] Ju Wu, Peng Jin. Self-assembly of InAs quantum dots on GaAs(001)by molecular beam epitaxy[J]. Front. Phys. , 2015, 10(1): 108101-.
[5] Wei-dong Sheng, Marek Korkusinski, Alev Devrim Gü?lü, Michal Zielinski, Pawel Potasz, Eugene S. Kadantsev, Oleksandr Voznyy, Pawel Hawrylak. Electronic and optical properties of semiconductor and graphene quantum dots[J]. Front. Phys. , 2012, 7(3): 328-352.
[6] Christoph Stampfer, Stefan Fringes, Johannes Güttinger, Francoise Molitor, Christian Volk, Bernat Terrés, Jan Dauber, Stephan Engels, Stefan Schnez, Arnhild Jacobsen, Susanne Droscher, Thomas Ihn, Klaus Ensslin. Transport in graphene nanostructures[J]. Front. Phys. , 2011, 6(3): 271-293.
[7] Jing-feng LIU(刘景锋), Xue-hua WANG(王雪华), . Spontaneous emission in micro- and nano-structures[J]. Front. Phys. , 2010, 5(3): 245-259.
[8] SHAN Guang-cun, BAO Shu-ying, HUANG Wei. Another model for a multiexcitonic quantum dot in an optical microcavity[J]. Front. Phys. , 2007, 2(1): 63-67.
[9] LIU Can-de, LIU Wen, SU Xi-yu, LI Feng-ling, WU Da-peng. Dynamical behaviors of an exciton in an asymmetric double coupled quantum dot[J]. Front. Phys. , 2006, 1(2): 238-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed