|
|
Environmental engineering of transition metal dichalcogenide optoelectronics |
Trevor LaMountain, Erik J. Lenferink, Yen-Jung Chen, Teodor K. Stanev, Nathaniel P. Stern( ) |
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA |
|
|
Abstract The explosion of interest in two-dimensional van der Waals materials has been in many ways driven by their layered geometry. This feature makes possible numerous avenues for assembling and manipulating the optical and electronic properties of these materials. In the specific case of monolayer transition metal dichalcogenide semiconductors, the direct band gap combined with the flexibility for manipulation of layers has made this class of materials promising for optoelectronics. Here, we review the properties of these layered materials and the various means of engineering these properties for optoelectronics. We summarize approaches for control that modify their structural and chemical environment, and we give particular detail on the integration of these materials into engineered optical fields to control their optical characteristics. This combination of controllability from their layered surface structure and photonic environment provide an expansive landscape for novel optoelectronic phenomena.
|
Keywords
transition metal dichalcogenides
optoelectronics
van der Waals materials
heterostructures
excitons
|
Corresponding Author(s):
Nathaniel P. Stern
|
Issue Date: 08 June 2018
|
|
1 |
K. Barnham and G. Duggan, A new approach to highefficiency multi-band-gap solar cells, J. Appl. Phys. 67(7), 3490 (1990)
https://doi.org/10.1063/1.345339
|
2 |
N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Z. I. Alferov, and D. Bimberg, Quantum dot heterostructures: Fabrication, properties, lasers, Semiconductors 32(4), 343 (1998)
https://doi.org/10.1134/1.1187396
|
3 |
C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials, Sol. Energy Mater. Sol. Cells 91(4), 238 (2007)
https://doi.org/10.1016/j.solmat.2006.09.003
|
4 |
U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE 90(6), 1022 (2002)
https://doi.org/10.1109/JPROC.2002.1021567
|
5 |
H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9(3), 205 (2010)
https://doi.org/10.1038/nmat2629
|
6 |
M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61(21), 2472 (1988)
https://doi.org/10.1103/PhysRevLett.61.2472
|
7 |
S. Bader and S. Parkin, Spintronics, Annu. Rev.: Condens. Matter Phys. 1(1), 71 (2010)
https://doi.org/10.1146/annurev-conmatphys-070909-104123
|
8 |
K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)
https://doi.org/10.1038/nnano.2012.96
|
9 |
M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, R. M. III Ager, Wallace, and A. Javey, Recombination kinetics and effects of superacid treatment in sulfur- and selenium-based transition metal dichalcogenides, Nano Lett. 16(4), 2786 (2016)
https://doi.org/10.1021/acs.nanolett.6b00536
|
10 |
A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Optical generation of excitonic valley coherence in monolayer WSe2,Nat. Nanotechnol. 8(9), 634 (2013)
https://doi.org/10.1038/nnano.2013.151
|
11 |
K. Novoselov and A. C. Neto, Two-dimensional crystalsbased heterostructures: Materials with tailored properties, Phys. Scr. 2012, 014006 (2012)
https://doi.org/10.1088/0031-8949/2012/T146/014006
|
12 |
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
https://doi.org/10.1038/nature12385
|
13 |
K. Novoselov, A. Mishchenko, A. Carvalho, and A. C. Neto, 2D materials and van der Waals heterostructures,Science 353(6298), aac9439 (2016)
https://doi.org/10.1126/science.aac9439
|
14 |
D. Jariwala, T. J. Marks, and M. C. Hersam, Mixeddimensional van der Waals heterostructures, Nat. Mater. 16(2), 170 (2017)
https://doi.org/10.1038/nmat4703
|
15 |
B. Radisavljevic, M. B. Whitwick, and A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano 5(12), 9934 (2011)
https://doi.org/10.1021/nn203715c
|
16 |
D. Ovchinnikov, A. Allain, Y.S. Huang, D. Dumcenco, and A. Kis, Electrical transport properties of singlelayer WS2,ACS Nano 8(8), 8174 (2014)
https://doi.org/10.1021/nn502362b
|
17 |
J. Lee, K. F. Mak, and J. Shan, Electrical control of the valley Hall effect in bilayer MoS2 transistors, Nat. Nanotechnol. 11(5), 421 (2016)
https://doi.org/10.1038/nnano.2015.337
|
18 |
Z. Wang, J. Shan, and K. F. Mak, Valley- and spinpolarized Landau levels in monolayer WSe2, Nat. Nanotechnol. 12(2), 144 (2016)
https://doi.org/10.1038/nnano.2016.213
|
19 |
D. Wu, X. Li, L. Luan, X. Wu, W. Li, M. N. Yogeesh, R. Ghosh, Z. Chu, D. Akinwande, Q. Niu, and K. Lai, Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors, Proc. Natl. Acad. Sci. USA 113(31), 8583 (2016)
https://doi.org/10.1073/pnas.1605982113
|
20 |
Y. Jia, T. K. Stanev, E. J. Lenferink, and N. P. Stern, Enhanced conductivity along lateral homojunction interfaces of atomically thin semiconductors, 2D Materials 4, 021012 (2017)
|
21 |
S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts, Nano Lett. 13(1), 100 (2013)
https://doi.org/10.1021/nl303583v
|
22 |
B. Radisavljevic, M. B. Whitwick, and A. Kis, Smallsignal amplifier based on single-layer MoS2, Appl. Phys. Lett. 101(4), 043103 (2012)
https://doi.org/10.1063/1.4738986
|
23 |
J. Pu, Y. Yomogida, K. K. Liu, L. J. Li, Y. Iwasa, and T. Takenobu, Highly flexible MoS2 thin-film transistors with ion gel dielectrics, Nano Lett. 12(8), 4013 (2012)
https://doi.org/10.1021/nl301335q
|
24 |
H.Y. Chang, S. Yang, J. Lee, L. Tao, W.S. Hwang, D. Jena, N. Lu, and D. Akinwande, High-performance, highly bendable MoS2 transistors with high-Kdielectrics for flexible low-power systems, ACS Nano 7, 5446 (2013)
https://doi.org/10.1021/nn401429w
|
25 |
K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors, Nanoscale 6(18), 10530 (2014)
https://doi.org/10.1039/C4NR02634A
|
26 |
H. Yu, D. Talukdar, W. Xu, J. B. Khurgin, and Q. Xiong, Charge-induced second-harmonic generation in bilayer WSe2, Nano Lett. 15(8), 5653 (2015)
https://doi.org/10.1021/acs.nanolett.5b02547
|
27 |
G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,Phys. Rev. Lett. 114(9), 097403 (2015)
https://doi.org/10.1103/PhysRevLett.114.097403
|
28 |
K. L. Seyler, J. R. Schaibley, P. Gong, P. Rivera, A. M. Jones, S. Wu, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Electrical control of second-harmonic generation in a WSe2 monolayer transistor, Nat. Nanotechnol. 10(5), 407 (2015)
https://doi.org/10.1038/nnano.2015.73
|
29 |
Z. Sun, A. Martinez, and F. Wang, Optical modulators with 2D layered material, Nat. Photon. 10(4), 227 (2016)
https://doi.org/10.1038/nphoton.2016.15
|
30 |
Y. M. He, G. Clark, J. R. Schaibley, Y. He, M. C. Chen, Y. J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.Y. Lu, and J. W. Pan, Single quantum emitters in monolayer semiconductors, Nat. Nanotechnol. 10(6), 497 (2015)
https://doi.org/10.1038/nnano.2015.75
|
31 |
A. Branny, G. Wang, S. Kumar, C. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning, Appl. Phys. Lett. 108(14), 142101 (2016)
https://doi.org/10.1063/1.4945268
|
32 |
S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, Straininduced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2, Nano Lett. 15(11), 7567 (2015)
https://doi.org/10.1021/acs.nanolett.5b03312
|
33 |
A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoǧlu, Optically active quantum dots in monolayer WSe2, Nat. Nanotechnol. 10(6), 491 (2015)
https://doi.org/10.1038/nnano.2015.60
|
34 |
J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, Surface plasmonenhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays, Small 11(20), 2392 (2015)
https://doi.org/10.1002/smll.201403422
|
35 |
N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer, Nat. Commun. 7, 13328 (2016)
https://doi.org/10.1038/ncomms13328
|
36 |
S. Butun, E. Palacios, J. D. Cain, Z. Liu, V. P. Dravid, and K. Aydin, Quantifying plasmon-enhanced light absorption in monolayer WS2 films, ACS Appl. Mater. Interfaces 9(17), 15044 (2017)
https://doi.org/10.1021/acsami.7b01947
|
37 |
N. Lundt, P. Nagler, A. Nalitov, S. Klembt, M. Wurdack, S. Stoll, T. Harder, S. Betzold, V. Baumann, A. Kavokin, et al., Valley polarized relaxation and upconversion luminescence from tamm-plasmon trionpolaritons with a MoSe2 monolayer,2D Materials 4, 025096 (2017)
|
38 |
T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons, ACS Photon. 5(4), 1281 (2018)
https://doi.org/10.1021/acsphotonics.7b01032
|
39 |
T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, Polaritons in layered twodimensional materials, Nat. Mater. 16(2), 182 (2017)
https://doi.org/10.1038/nmat4792
|
40 |
D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, Polaritons in van der Waals materials, Science 354(6309), aag1992 (2016)
https://doi.org/10.1126/science.aag1992
|
41 |
X. Liu, T. Galfsky, Z. Sun, F. Xia, E. C. Lin, Y. H. Lee, S. Kéna-Cohen, and V. M. Menon, Strong light–matter coupling in two-dimensional atomic crystals, Nat. Photon. 9(1), 30 (2015)
https://doi.org/10.1038/nphoton.2014.304
|
42 |
Y. J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, Valley-polarized exciton–polaritons in a monolayer semiconductor, Nat. Photon. 11(7), 431 (2017)
https://doi.org/10.1038/nphoton.2017.86
|
43 |
J. Pak, J. Jang, K. Cho, T. Y. Kim, J. K. Kim, Y. Song, W. K. Hong, M. Min, H. Lee, and T. Lee, Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine, Nanoscale 7(44), 18780 (2015)
https://doi.org/10.1039/C5NR04836B
|
44 |
L. Britnell, R. Ribeiro, A. Eckmann, R. Jalil, B. Belle, A. Mishchenko, Y. J. Kim, R. Gorbachev, T. Georgiou, S. Morozov, et al., Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)
https://doi.org/10.1126/science.1235547
|
45 |
A. Pospischil, M. M. Furchi, and T. Mueller, Solarenergy conversion and light emission in an atomic monolayer p–n diode, Nat. Nanotechnol. 9(4), 257 (2014)
https://doi.org/10.1038/nnano.2014.14
|
46 |
F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. Haigh, A. Geim, A. Tartakovskii, and K. S. Novoselov, Light-emitting diodes by band-structure engineering in van der Waals heterostructures, Nat. Mater. 14(3), 301 (2015)
https://doi.org/10.1038/nmat4205
|
47 |
J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions, Nat. Nanotechnol. 9(4), 268 (2014)
https://doi.org/10.1038/nnano.2014.26
|
48 |
B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide, Nat. Nanotechnol. 9(4), 262 (2014)
https://doi.org/10.1038/nnano.2014.25
|
49 |
Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, Monolayer excitonic laser, Nat. Photon. 9(11), 733 (2015)
https://doi.org/10.1038/nphoton.2015.197
|
50 |
J. Shang, C. Cong, Z. Wang, N. Peimyoo, L. Wu, C. Zou, Y. Chen, X. Y. Chin, J. Wang, C. Soci, W. Huang, and T. Yu, Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers, Nat. Commun. 8(1), 543 (2017)
https://doi.org/10.1038/s41467-017-00743-w
|
51 |
L. Peng, Y. Yuan, G. Li, X. Yang, J. J. Xian, C. J. Yi, Y. G. Shi, and Y. S. Fu, Observation of topological states residing at step edges of WTe2, Nat. Commun. 8(1), 659 (2017)
https://doi.org/10.1038/s41467-017-00745-8
|
52 |
I. Belopolski, D. S. Sanchez, Y. Ishida, X. Pan, P. Yu, S. Y. Xu, G. Chang, T. R. Chang, H. Zheng, N. Alidoust, et al., Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2, Nat. Commun. 7, 13643 (2016)
https://doi.org/10.1038/ncomms13643
|
53 |
Y. Zhang, T. Oka, R. Suzuki, J. Ye, and Y. Iwasa, Electrically switchable chiral light-emitting transistor, Science 344(6185), 725 (2014)
https://doi.org/10.1126/science.1251329
|
54 |
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
|
55 |
M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,Nat. Chem. 5(4), 263 (2013)
https://doi.org/10.1038/nchem.1589
|
56 |
H. Yu, X. Cui, X. Xu, and W. Yao, Valley excitons in two-dimensional semiconductors, Natl. Sci. Rev. 2(1), 57 (2015)
https://doi.org/10.1093/nsr/nwu078
|
57 |
J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, Valleytronics in 2D materials, Nat. Rev. Mater. 1(11), 16055 (2016)
https://doi.org/10.1038/natrevmats.2016.55
|
58 |
W. T. Hsu, Y. L. Chen, C. H. Chen, P. S. Liu, T. H. Hou, L. J. Li, and W. H. Chang, Optically initialized robust valley-polarized holes in monolayer WSe2, Nat. Commun. 6, 8963 (2015)
https://doi.org/10.1038/ncomms9963
|
59 |
X. X. Zhang, T. Cao, Z. Lu, Y. C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, Magnetic brightening and control of dark excitons in monolayer WSe2, Nat. Nanotechnol. 12(9), 883 (2017)
https://doi.org/10.1038/nnano.2017.105
|
60 |
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
|
61 |
T. Cheiwchanchamnangij and W. R. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2, Phys. Rev. B 85(20), 205302 (2012)
https://doi.org/10.1103/PhysRevB.85.205302
|
62 |
A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113(7), 076802 (2014)
https://doi.org/10.1103/PhysRevLett.113.076802
|
63 |
K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)
https://doi.org/10.1038/nmat3505
|
64 |
J. Klein, J. Wierzbowski, A. Regler, J. Becker, F. Heimbach, K. Müller, M. Kaniber, and J. J. Finley, Stark effect spectroscopy of mono- and few-layer MoS2, Nano Lett. 16(3), 1554 (2016)
https://doi.org/10.1021/acs.nanolett.5b03954
|
65 |
K. C. Wang, T. K. Stanev, D. Valencia, J. Charles, A. Henning, V. K. Sangwan, A. Lahiri, D. Mejia, P. Sarangapani, M. Povolotskyi, et al., Control of interlayer physics in 2H transition metal dichalcogenides, J. Appl. Phys. 122(22), 224302 (2017)
https://doi.org/10.1063/1.5005958
|
66 |
Z. Wang, Y. H. Chiu, K. Honz, K. F. Mak, and J. Shan, Electrical tuning of interlayer exciton gases in WSe2 bilayers, Nano Lett. 18(1), 137 (2018)
https://doi.org/10.1021/acs.nanolett.7b03667
|
67 |
J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Electrical control of neutral and charged excitons in a monolayer semiconductor, Nat. Commun. 4, 1474 (2013)
https://doi.org/10.1038/ncomms2498
|
68 |
D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
https://doi.org/10.1103/PhysRevLett.108.196802
|
69 |
A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Falko, k·p theory for two-dimensional transition metal dichalcogenide semiconductors, 2D Materials 2, 022001 (2015)
|
70 |
X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys. 10(5), 343 (2014)
|
71 |
T. Yu and M. Wu, Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS2, Phys. Rev. B 89(20), 205303 (2014)
https://doi.org/10.1103/PhysRevB.89.205303
|
72 |
W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B 77(23), 235406 (2008)
https://doi.org/10.1103/PhysRevB.77.235406
|
73 |
K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, The valley Hall effect in MoS2 transistors, Science 344(6191), 1489 (2014)
https://doi.org/10.1126/science.1250140
|
74 |
A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles, Magneto-oscillatory conductance in silicon surfaces, Phys. Rev. Lett. 16(20), 901 (1966)
https://doi.org/10.1103/PhysRevLett.16.901
|
75 |
D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano 8(2), 1102 (2014)
https://doi.org/10.1021/nn500064s
|
76 |
Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)
https://doi.org/10.1038/natrevmats.2016.42
|
77 |
W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, Recent development of twodimensional transition metal dichalcogenides and their applications, Mater. Today 20(3), 116 (2017)
https://doi.org/10.1016/j.mattod.2016.10.002
|
78 |
M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, Mechanisms of photoconductivity in atomically thin MoS2, Nano Lett. 14(11), 6165 (2014)
https://doi.org/10.1021/nl502339q
|
79 |
C.-C. Wu, D. Jariwala, V. K. Sangwan, T. J. Marks, M. C. Hersam, and L. J. Lauhon, Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy, J. Phys. Chem. Lett. 4(15), 2508 (2013)
https://doi.org/10.1021/jz401199x
|
80 |
S. L. Howell, D. Jariwala, C. C. Wu, K. S. Chen, V. K. Sangwan, J. Kang, T. J. Marks, M. C. Hersam, and L. J. Lauhon, Investigation of band-offsets at monolayer–multilayer MoS2 junctions by scanning photocurrent microscopy, Nano Lett. 15(4), 2278 (2015)
https://doi.org/10.1021/nl504311p
|
81 |
M. Tosun, D. Fu, S. B. Desai, C. Ko, J. Seuk Kang, D. H. Lien, M. Najmzadeh, S. Tongay, J. Wu, and A. Javey, MoS2 heterojunctions by thickness modulation, Sci. Rep. 5(1), 10990 (2015)
https://doi.org/10.1038/srep10990
|
82 |
H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)
https://doi.org/10.1038/nnano.2012.95
|
83 |
T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Valleyselective circular dichroism of monolayer molybdenum disulphide,Nat. Commun. 3(1), 887 (2012)
https://doi.org/10.1038/ncomms1882
|
84 |
T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, Low-temperature photocarrier dynamics in monolayer MoS2, Appl. Phys. Lett. 99(10), 102109 (2011)
https://doi.org/10.1063/1.3636402
|
85 |
G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2, Phys. Rev. B 90(7), 075413 (2014)
https://doi.org/10.1103/PhysRevB.90.075413
|
86 |
D. Lagarde, L. Bouet, X. Marie, C. Zhu, B. Liu, T. Amand, P. Tan, and B. Urbaszek, Carrier and polarization dynamics in monolayer MoS2, Phys. Rev. Lett. 112(4), 047401 (2014)
https://doi.org/10.1103/PhysRevLett.112.047401
|
87 |
G. Wang, E. Palleau, T. Amand, S. Tongay, X. Marie, and B. Urbaszek, Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe2 monolayers, Appl. Phys. Lett. 106(11), 112101 (2015)
https://doi.org/10.1063/1.4916089
|
88 |
C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, Exciton radiative lifetime in transition metal dichalcogenide monolayers, Phys. Rev. B 93(20), 205423 (2016)
https://doi.org/10.1103/PhysRevB.93.205423
|
89 |
G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, J. Lupton, R. Bratschitsch, C. Schller, and T. Korn, Valley dynamics of excitons in monolayer dichalcogenides, physica status solidi RRL 11, 1700131 (2017)
|
90 |
L. Yang, N. A. Sinitsyn, W. Chen, J. Yuan, J. Zhang, J. Lou, and S. A. Crooker, Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2, Nat. Phys. 11(10), 830 (2015)
|
91 |
X. Song, S. Xie, K. Kang, J. Park, and V. Sih, Longlived hole spin/valley polarization probed by Kerr rotation in monolayer WSe2, Nano Lett. 16(8), 5010 (2016)
https://doi.org/10.1021/acs.nanolett.6b01727
|
92 |
T. Yan, S. Yang, D. Li, and X. Cui, Long valley relaxation time of free carriers in monolayer WSe2,Phys. Rev. B 95(24), 241406 (2017)
https://doi.org/10.1103/PhysRevB.95.241406
|
93 |
P. Dey, L. Yang, C. Robert, G. Wang, B. Urbaszek, X. Marie, and S. A. Crooker, Gate-controlled spin-valley locking of resident carriers in WSe2 monolayers, Phys. Rev. Lett. 119(13), 137401 (2017)
https://doi.org/10.1103/PhysRevLett.119.137401
|
94 |
G. Aivazian, Z. Gong, A. M. Jones, R.L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic control of valley pseudospin in monolayer WSe2, Nat. Phys. 11, 148 (2015)
|
95 |
A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoǧlu, Valley Zeeman effect in elementary optical excitations of monolayer WSe2, Nat. Phys. 11(2), 141 (2015)
|
96 |
Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, Valley splitting and polarization by the Zeeman effect in monolayer MoSe2, Phys. Rev. Lett. 113(26), 266804 (2014)
https://doi.org/10.1103/PhysRevLett.113.266804
|
97 |
D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer MoSe2, Phys. Rev. Lett. 114(3), 037401 (2015)
https://doi.org/10.1103/PhysRevLett.114.037401
|
98 |
M. Molas, C. Faugeras, A. Slobodeniuk, K. Nogajewski, M. Bartos, D. Basko, and M. Potemski, Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides, 2D Materials 4, 021003 (2017)
|
99 |
G. Wang, M. M. Glazov, C. Robert, T. Amand, X. Marie, and B. Urbaszek, Double resonant Raman scattering and valley coherence generation in monolayer WSe2,Phys. Rev. Lett. 115(11), 117401 (2015)
https://doi.org/10.1103/PhysRevLett.115.117401
|
100 |
G. Wang, X. Marie, B. L. Liu, T. Amand, C. Robert, F. Cadiz, P. Renucci, and B. Urbaszek, Control of exciton valley coherence in transition metal dichalcogenide monolayers, Phys. Rev. Lett. 117(18), 187401 (2016)
https://doi.org/10.1103/PhysRevLett.117.187401
|
101 |
Z. Ye, D. Sun, and T. F. Heinz, Optical manipulation of valley pseudospin, Nat. Phys. 13, 26 (2016)
|
102 |
R. Schmidt, A. Arora, G. Plechinger, P. Nagler, A. G. del Águila, M. V. Ballottin, P. C. Christianen, S. M. de Vasconcellos, C. Schüller, T. Korn, and R. Bratschitsch, Magnetic-field-induced rotation of polarized light emission from monolayer WS2, Phys. Rev. Lett. 117(7), 077402 (2016)
https://doi.org/10.1103/PhysRevLett.117.077402
|
103 |
F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures, Phys. Rev. X 7(2), 021026 (2017)
https://doi.org/10.1103/PhysRevX.7.021026
|
104 |
N. Yoshikawa, S. Tani, and K. Tanaka, Raman-like resonant secondary emission causes valley coherence in CVD-grown monolayer MoS2, Phys. Rev. B 95(11), 115419 (2017)
https://doi.org/10.1103/PhysRevB.95.115419
|
105 |
K. Hao, G. Moody, F.Wu, C. K. Dass, L. Xu, C.-H. Chen, L. Sun, M.-Y. Li, L.-J. Li, A. H. MacDonald, and X. Li, Direct measurement of exciton valley coherence in monolayer WSe2, Nat. Phys. 12, 677 (2016)
|
106 |
N. Ubrig, S. Jo, M. Philippi, D. Costanzo, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping, Nano Lett. 17(9), 5719 (2017)
https://doi.org/10.1021/acs.nanolett.7b02666
|
107 |
M. Onga, Y. Zhang, T. Ideue, and Y. Iwasa, Exciton Hall effect in monolayer MoS2, Nat. Mater. 16(12), 1193 (2017)
https://doi.org/10.1038/nmat4996
|
108 |
J. Lee, Z. Wang, H. Xie, K. F. Mak, and J. Shan, Valley magnetoelectricity in single-layer MoS2, Nat. Mater. 16(9), 887 (2017)
https://doi.org/10.1038/nmat4931
|
109 |
Y. Kato, R. Myers, A. Gossard, and D. Awschalom, Observation of the spin Hall effect in semiconductors, Science 306(5703), 1910 (2004)
https://doi.org/10.1126/science.1105514
|
110 |
M. Glazov and S. Ganichev, High frequency electric field induced nonlinear effects in graphene, Phys. Rep. 535(3), 101 (2014)
https://doi.org/10.1016/j.physrep.2013.10.003
|
111 |
M. Eginligil, B. Cao, Z. Wang, X. Shen, C. Cong, J. Shang, C. Soci, and T. Yu, Dichroic spin–valley photocurrent in monolayer molybdenum disulphide, Nat. Commun. 6, 7636 (2015)
https://doi.org/10.1038/ncomms8636
|
112 |
H. Guan, N. Tang, X. Xu, L. Shang, W. Huang, L. Fu, X. Fang, J. Yu, C. Zhang, X. Zhang, L. Dai, Y. Chen, W. Ge, and B. Shen, Photon wavelength dependent valley photocurrent in multilayer MoS2, Phys. Rev. B 96(24), 241304 (2017)
https://doi.org/10.1103/PhysRevB.96.241304
|
113 |
H. Yuan, X. Wang, B. Lian, H. Zhang, X. Fang, B. Shen, G. Xu, Y. Xu, S. C. Zhang, H. Y. Hwang, and Y. Cui, Generation and electric control of spin–valleycoupled circular photogalvanic current in WSe2, Nat. Nanotechnol. 9(10), 851 (2014)
https://doi.org/10.1038/nnano.2014.183
|
114 |
A. V. Stier, N. P. Wilson, G. Clark, X. Xu, and S. A. Crooker, Probing the influence of dielectric environment on excitons in monolayer WSe2: Insight from high magnetic fields, Nano Lett. 16(11), 7054 (2016)
https://doi.org/10.1021/acs.nanolett.6b03276
|
115 |
M. Buscema, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2, Nano Res. 7(4), 561 (2014)
https://doi.org/10.1007/s12274-014-0424-0
|
116 |
S. Latini, T. Olsen, and K. S. Thygesen, Excitons in van der Waals heterostructures: The important role of dielectric screening, Phys. Rev. B 92(24), 245123 (2015)
https://doi.org/10.1103/PhysRevB.92.245123
|
117 |
H. Isago, Optical Spectra of Phthalocyanines and Related Compounds, Springer, 2015
https://doi.org/10.1007/978-4-431-55102-7
|
118 |
X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, Raman enhancement effect on twodimensional layered materials: Graphene, h-BN and MoS2, Nano Lett. 14(6), 3033 (2014)
https://doi.org/10.1021/nl404610c
|
119 |
C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y.H. Lee, and J. R. Lombardi, Ultrahigh Raman enhancement on monolayer MoS2, ACS Photon. 3(7), 1164 (2016)
https://doi.org/10.1021/acsphotonics.6b00213
|
120 |
J. F. Arenas, M. S. Woolley, J. C. Otero, and J. I. Marcos, Charge-transfer processes in surface-enhanced Raman scattering, Franck–Condon active vibrations of pyrazine, J. Phys. Chem. 100(8), 3199 (1996)
https://doi.org/10.1021/jp952240k
|
121 |
D. Jariwala, S. L. Howell, K. S. Chen, J. Kang, V. K. Sangwan, S. A. Filippone, R. Turrisi, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2, Nano Lett. 16(1), 497 (2016)
https://doi.org/10.1021/acs.nanolett.5b04141
|
122 |
A. Raja, A. Montoya-Castillo, J. Zultak, X. X. Zhang, Z. Ye, C. Roquelet, D. A. Chenet, A. M. van der Zande, P. Huang, S. Jockusch, J. Hone, D. R. Reichman, L. E. Brus, and T. F. Heinz, Energy transfer from quantum dots to graphene and MoS2: The role of absorption and screening in two-dimensional materials, Nano Lett. 16(4), 2328 (2016)
https://doi.org/10.1021/acs.nanolett.5b05012
|
123 |
T. Guo, S. Sampat, K. Zhang, J. A. Robinson, S. M. Rupich, Y. J. Chabal, Y. N. Gartstein, and A. V. Malko, Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films, Sci. Rep. 7, 41967 (2017)
https://doi.org/10.1038/srep41967
|
124 |
S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, Dyesensitized MoS2 photodetector with enhanced spectral photoresponse, ACS Nano 8(8), 8285 (2014)
https://doi.org/10.1021/nn502715h
|
125 |
S. Bettis Homan, V. K. Sangwan, I. Balla, H. Bergeron, E. A. Weiss, and M. C. Hersam, Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic Pentacene–MoS2 van der Waals heterojunction, Nano Lett. 17(1), 164 (2017)
https://doi.org/10.1021/acs.nanolett.6b03704
|
126 |
F. Prins, A. J. Goodman, and W. A. Tisdale, Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2, Nano Lett. 14(11), 6087 (2014)
https://doi.org/10.1021/nl5019386
|
127 |
D. Prasai, A. R. Klots, A. Newaz, J. S. Niezgoda, N. J. Orfield, C. A. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. I. Bolotin, Electrical control of near-field energy transfer between quantum dots and two-dimensional semiconductors, Nano Lett. 15(7), 4374 (2015)
https://doi.org/10.1021/acs.nanolett.5b00514
|
128 |
M. Amani, D. H.Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, K. C. Santosh, M. Dubey, et al., Near-unity photoluminescence quantum yield in MoS2, Science 350(6264), 1065 (2015)
https://doi.org/10.1126/science.aad2114
|
129 |
D. M. Sim, M. Kim, S. Yim, M.J. Choi, J. Choi, S. Yoo, and Y. S. Jung, Controlled doping of vacancy-containing few-layer MoS2viahighly stable thiol-based molecular chemisorption, ACS Nano 9(12), 12115 (2015)
https://doi.org/10.1021/acsnano.5b05173
|
130 |
H. V. Han, A. Y. Lu, L. S. Lu, J. K. Huang, H. Li, C. L. Hsu, Y. C. Lin, M. H. Chiu, K. Suenaga, C. W. Chu, H. C. Kuo, W. H. Chang, L. J. Li, and Y. Shi, Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment, ACS Nano 10(1), 1454 (2016)
https://doi.org/10.1021/acsnano.5b06960
|
131 |
I. S. Kim, V. K. Sangwan, D. Jariwala, J. D. Wood, S. Park, K.S. Chen, F. Shi, F. Ruiz-Zepeda, A. Ponce, M. Jose-Yacaman, V. P. Dravid, T. J. Marks, M. C. Hersam, and L. J. Lauhon, Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2, ACS Nano 8(10), 10551 (2014)
https://doi.org/10.1021/nn503988x
|
132 |
X. Liu, D. Qu, J. Ryu, F. Ahmed, Z. Yang, D. Lee, and W. J. Yoo, P-type polar transition of chemically doped multilayer MoS2 transistor, Adv. Mater. 28(12), 2345 (2016)
https://doi.org/10.1002/adma.201505154
|
133 |
A. Nipane, D. Karmakar, N. Kaushik, S. Karande, and S. Lodha, Few-layer MoS2p-type devices enabled by selective doping using low energy phosphorus implantation, ACS Nano 10(2), 2128 (2016)
https://doi.org/10.1021/acsnano.5b06529
|
134 |
C.-H. Chen, C.-L. Wu, J. Pu, M.-H. Chiu, P. Kumar, T. Takenobu, and L.-J. Li, Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration, 2D Materials 1, 034001 (2014)
|
135 |
H. Matsuoka, K. Kanahashi, N. Tanaka, Y. Shoji, L. J. Li, J. Pu, H. Ito, H. Ohta, T. Fukushima, and T. Takenobu, Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant, Jpn. J. Appl. Phys. 57(2S2), 02CB15 (2018)
|
136 |
T. Komesu, D. Le, I. Tanabe, E. F. Schwier, Y. Kojima, M. Zheng, K. Taguchi, K. Miyamoto, T. Okuda, H. Iwasawa, K. Shimada, T. S. Rahman, and P. A. Dowben, Adsorbate doping of MoS2 and WSe2: The influence of Na and Co, J. Phys.: Condens. Matter 29(28), 285501 (2017)
https://doi.org/10.1088/1361-648X/aa7482
|
137 |
H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, and A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium, Nano Lett. 13(5), 1991 (2013)
https://doi.org/10.1021/nl400044m
|
138 |
K. Chen, D. Kiriya, M. Hettick, M. Tosun, T.J. Ha, S. R. Madhvapathy, S. Desai, A. Sachid, and A. Javey, Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density, APL Mater. 2, 092504 (2014)
https://doi.org/10.1063/1.4891824
|
139 |
W. Wang, X. Niu, H. Qian, L. Guan, M. Zhao, X. Ding, S. Zhang, Y. Wang, and J. Sha, Surface charge transfer doping of monolayer molybdenum disulfide by black phosphorus quantum dots, Nanotechnology 27(50), 505204 (2016)
https://doi.org/10.1088/0957-4484/27/50/505204
|
140 |
S. S. Chee, C. Oh, M. Son, G. C. Son, H. Jang, T. J. Yoo, S. Lee, W. Lee, J. Y. Hwang, H. Choi, B. H. Lee, and M. H. Ham, Sulfur vacancy-induced reversible doping of transition metal disulfides via hydrazine treatment, Nanoscale 9(27), 9333 (2017)
https://doi.org/10.1039/C7NR01883E
|
141 |
P. Nagler, M. V. Ballottin, A. A. Mitioglu, F. Mooshammer, N. Paradiso, C. Strunk, R. Huber, A. Chernikov, P. Christianen, C. Schüller, and T. Korn, Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures, Nat. Commun. 8(1), 1551 (2017)
https://doi.org/10.1038/s41467-017-01748-1
|
142 |
P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Valley-polarized exciton dynamics in a 2D semiconductor heterostructure, Science 351(6274), 688 (2016)
https://doi.org/10.1126/science.aac7820
|
143 |
J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Band offsets and heterostructures of two-dimensional semiconductors, Appl. Phys. Lett. 102(1), 012111 (2013)
https://doi.org/10.1063/1.4774090
|
144 |
M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, J. H. He, W.H. Chang, K. Suenaga, and L.J. Li, Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface, Science 349(6247), 524 (2015)
https://doi.org/10.1126/science.aab4097
|
145 |
R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan, Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–ndiodes, Nano Lett. 14(10), 5590 (2014)
https://doi.org/10.1021/nl502075n
|
146 |
M. M. Furchi, A. A. Zechmeister, F. Hoeller, S. Wachter, A. Pospischil, and T. Mueller, Photovoltaics in van der Waals heterostructures, IEEE J. Sel. Top. Quantum Electron. 23(1), 106 (2017)
https://doi.org/10.1109/JSTQE.2016.2582318
|
147 |
B. Peng, G. Yu, X. Liu, B. Liu, X. Liang, L. Bi, L. Deng, T. C. Sum, and K. P. Loh, Ultrafast charge transfer in MoS2/WSe2 p–n Heterojunction, 2D Materials 3, 025020 (2016)
|
148 |
J. Kim, C. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures, Sci. Adv. 3(7), e1700518 (2017)
https://doi.org/10.1126/sciadv.1700518
|
149 |
J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, Directional interlayer spin-valley transfer in two-dimensional heterostructures, Nat. Commun. 7, 13747 (2016)
https://doi.org/10.1038/ncomms13747
|
150 |
H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, et al., Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014)
https://doi.org/10.1073/pnas.1405435111
|
151 |
P. Rivera, J. Schaibley, A. Jones, J. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures, Nat. Commun. 6(1), 6242 (2015)
https://doi.org/10.1038/ncomms7242
|
152 |
P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.U. Lee, K. Y. Ma, A.R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures, ACS Nano 11, 4041 (2017)
https://doi.org/10.1021/acsnano.7b00640
|
153 |
J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, Interlayer exciton optoelectronics in a 2D heterostructure p–n junction, Nano Lett. 17(2), 638 (2017)
https://doi.org/10.1021/acs.nanolett.6b03398
|
154 |
S. Huang, L. Liang, X. Ling, A. A. Puretzky, D. B. Geohegan, B. G. Sumpter, J. Kong, V. Meunier, and M. S. Dresselhaus, Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2, Nano Lett. 16(2), 1435 (2016)
https://doi.org/10.1021/acs.nanolett.5b05015
|
155 |
K. Liu, L. Zhang, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S. G. Louie, and F. Wang, Evolution of interlayer coupling in twisted molybdenum disulfide bilayers, Nat. Commun. 5, 4966 (2014)
https://doi.org/10.1038/ncomms5966
|
156 |
S. Huang, X. Ling, L. Liang, J. Kong, H. Terrones, V. Meunier, and M. S. Dresselhaus, Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy, Nano Lett. 14(10), 5500 (2014)
https://doi.org/10.1021/nl5014597
|
157 |
J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, Valley polarization in stacked MoS2 induced by circularly polarized light, Nano Res. 10(5), 1618 (2017)
https://doi.org/10.1007/s12274-016-1329-x
|
158 |
R. Suzuki, M. Sakano, Y. J. Zhang, R. Akashi, D. Morikawa, A. Harasawa, K. Yaji, K. Kuroda, K. Miyamoto, T. Okuda, K. Ishizaka, R. Arita, and Y. Iwasa, Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry, Nat. Nanotechnol. 9(8), 611 (2014)
https://doi.org/10.1038/nnano.2014.148
|
159 |
T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y. R. Shen, W. T. Liu, and S. Wu, Valley and band structure engineering of folded MoS2 bilayers, Nat. Nanotechnol. 9(10), 825 (2014)
https://doi.org/10.1038/nnano.2014.176
|
160 |
B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, Long-lived direct and indirect interlayer excitons in van der Waals heterostructures, Nano Lett. 17(9), 5229 (2017)
https://doi.org/10.1021/acs.nanolett.7b01304
|
161 |
H. Yu, Y. Wang, Q. Tong, X. Xu, and W. Yao, Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers, Phys. Rev. Lett. 115(18), 187002 (2015)
https://doi.org/10.1103/PhysRevLett.115.187002
|
162 |
M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Band-structure topologies of graphene: Spin-orbit coupling effects from first principles, Phys. Rev. B 80(23), 235431 (2009)
https://doi.org/10.1103/PhysRevB.80.235431
|
163 |
Y. K. Luo, J. Xu, T. Zhu, G. Wu, E. J. McCormick, W. Zhan, M. R. Neupane, and R. K. Kawakami, Optovalleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves, Nano Lett. 17(6), 3877 (2017)
https://doi.org/10.1021/acs.nanolett.7b01393
|
164 |
A. Avsar, D. Unuchek, J. Liu, O. L. Sanchez, K. Watanabe, T. Taniguchi, B. Ozyilmaz, and A. Kis, Optospintronics in graphene via proximity coupling, ACS Nano 11(11), 11678 (2017)
https://doi.org/10.1021/acsnano.7b06800
|
165 |
A. Avsar, J. Y. Tan, T. Taychatanapat, J. Balakrishnan, G. Koon, Y. Yeo, J. Lahiri, A. Carvalho, A. Rodin, E. C. T. O’Farrell, G. Eda, A. H. Castro Neto, and B. Özyilmaz, Spin–orbit proximity effect in graphene, Nat. Commun. 5, 4875 (2014)
https://doi.org/10.1038/ncomms5875
|
166 |
M. Gmitra, D. Kochan, P. Högl, and J. Fabian, Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides, Phys. Rev. B 93(15), 155104 (2016)
https://doi.org/10.1103/PhysRevB.93.155104
|
167 |
S. Omar and B. J. van Wees, Graphene-WS2 heterostructures for tunable spin injection and spin transport, Phys. Rev. B 95(8), 081404 (2017)
https://doi.org/10.1103/PhysRevB.95.081404
|
168 |
T. S. Ghiasi, J. Ingla-Aynés, A. A. Kaverzin, and B. J. van Wees, Large proximity-induced spin lifetime anisotropy in transition-metal dichalcogenide/graphene heterostructures, Nano Lett. 17(12), 7528 (2017) (2017)
|
169 |
A. W. Cummings, J. H. Garcia, J. Fabian, and S. Roche, Giant spin lifetime anisotropy in graphene induced by proximity effects, Phys. Rev. Lett. 119(20), 206601 (2017)
https://doi.org/10.1103/PhysRevLett.119.206601
|
170 |
L. A. Benítez, J. F. Sierra, W. S. Torres, A. Arrighi, F. Bonell, M. V. Costache, and S. O. Valenzuela, Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature, Nat. Phys. 14, 303 (2017)
|
171 |
S. Omar and B. J. van Wees, Spin transport in highmobility graphene on WS2 substrate with electric-field tunable proximity spin-orbit interaction, Phys. Rev. B 97(4), 045414 (2018)
https://doi.org/10.1103/PhysRevB.97.045414
|
172 |
W. Yan, O. Txoperena, R. Llopis, H. Dery, L. E. Hueso, and F. Casanova, A two-dimensional spin field-effect switch, Nat. Commun. 7, 13372 (2016)
https://doi.org/10.1038/ncomms13372
|
173 |
A. Dankert and S. P. Dash, Electrical gate control of spin current in van der Waals heterostructures at room temperature, Nat. Commun. 8, 16093 (2017)
https://doi.org/10.1038/ncomms16093
|
174 |
D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. Robinson, E. Chekhovich, I. Tartakovskii, O. Kolosov, and A. Tartakovskii, Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates, Sci. Rep. 3, 3489 (2013)
https://doi.org/10.1038/srep03489
|
175 |
D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, Science 345(6194), 298 (2014)
https://doi.org/10.1126/science.1253213
|
176 |
M. K. L. Man, S. Deckoff-Jones, A. Winchester, G. Shi, G. Gupta, A. D. Mohite, S. Kar, E. Kioupakis, S. Talapatra, and K. M. Dani, Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer, Sci. Rep. 6, 20890 (2016)
https://doi.org/10.1038/srep20890
|
177 |
C. M. Chow, H. Yu, A. M. Jones, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, Unusual exciton–phonon interactions at van der Waals engineered interfaces, Nano Lett. 17(2), 1194 (2017)
https://doi.org/10.1021/acs.nanolett.6b04944
|
178 |
W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater. 12(3), 246 (2013)
https://doi.org/10.1038/nmat3518
|
179 |
J. Wierzbowski, J. Klein, F. Sigger, C. Straubinger, M. Kremser, T. Taniguchi, K. Watanabe, U. Wurstbauer, A. W. Holleitner, M. Kaniber, K. Mller, and J. J. Finley, Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit, Sci. Rep. 7(1), 12383 (2017)
https://doi.org/10.1038/s41598-017-09739-4
|
180 |
S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, et al., Optical signature of symmetry variations and spinvalley coupling in atomically thin tungsten dichalcogenides, Sci. Rep. 3, 1608 (2013)
https://doi.org/10.1038/srep01608
|
181 |
J. Kunstmann, T. B. Wendumu, and G. Seifert, Localized defect states in MoS2 monolayers: Electronic and optical properties, physica status solidi (b) 254, 1600645 (2016)
|
182 |
S. Y. Chen, T. Goldstein, J. Tong, T. Taniguchi, K. Watanabe, and J. Yan, Superior valley polarization and coherence of 2s excitons in monolayer WSe2, Phys. Rev. Lett. 120(4), 046402 (2018)
https://doi.org/10.1103/PhysRevLett.120.046402
|
183 |
K. Wang, K. D. Greve, L. A. Jauregui, A. Sushko, A. High, Y. Zhou, G. Scuri, T. Taniguchi, K. Watanabe, M. D. Lukin, H. Park, and P. Kim, Electrical control of charged carriers and excitons in atomically thin materials, Nat. Nanotechnol. 13(2), 128 (2018)
https://doi.org/10.1038/s41565-017-0030-x
|
184 |
H. J. Conley, B. Wang, J. I. Ziegler, S. T. Jr Haglund, Pantelides, and K. I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13(8), 3626 (2013)
https://doi.org/10.1021/nl4014748
|
185 |
S. B. Desai, G. Seol, J. S. Kang, H. Fang, C. Battaglia, R. Kapadia, J. W. Ager, J. Guo, and A. Javey, Straininduced indirect to direct bandgap transition in multilayer WSe2, Nano Lett. 14(8), 4592 (2014)
https://doi.org/10.1021/nl501638a
|
186 |
H. Rostami, R. Roldán, E. Cappelluti, R. Asgari, and F. Guinea, Theory of strain in single-layer transition metal dichalcogenides, Phys. Rev. B 92(19), 195402 (2015)
https://doi.org/10.1103/PhysRevB.92.195402
|
187 |
A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor, Nat. Commun. 8, 15053 (2017)
https://doi.org/10.1038/ncomms15053
|
188 |
M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J. Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, Single photon emitters in exfoliated WSe2 structures, Nat. Nanotechnol. 10(6), 503 (2015)
https://doi.org/10.1038/nnano.2015.67
|
189 |
C. Palacios-Berraquero, D. M. Kara, A. R. P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, Large-scale quantum-emitter arrays in atomically thin semiconductors, Nat. Commun. 8, 15093 (2017)
https://doi.org/10.1038/ncomms15093
|
190 |
G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, Nanobubble induced formation of quantum emitters in monolayer semiconductors, 2D Materials 4, 021019 (2017)
|
191 |
S. Schwarz, A. Kozikov, F. Withers, J. Maguire, A. Foster, S. Dufferwiel, L. Hague, M. Makhonin, L. Wilson, A. Geim, et al., Electrically pumped single-defect light emitters in WSe2, 2D Materials 3, 025038 (2016)
|
192 |
G. Clark, J. R. Schaibley, J. Ross, T. Taniguchi, K. Watanabe, J. R. Hendrickson, S. Mou, W. Yao, and X. Xu, Single defect light-emitting diode in a van der Waals heterostructure, Nano Lett. 16(6), 3944 (2016)
https://doi.org/10.1021/acs.nanolett.6b01580
|
193 |
E. M. Mannebach, C. Nyby, F. Ernst, Y. Zhou, J. Tolsma, Y. Li, M. J. Sher, I. C. Tung, H. Zhou, Q. Zhang, et al., Dynamic optical tuning of interlayer interactions in the transition metal dichalcogenides, Nano Lett. 17(12), 7761 (2017)
https://doi.org/10.1021/acs.nanolett.7b03955
|
194 |
S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett. 77(18), 3873 (1996)
https://doi.org/10.1103/PhysRevLett.77.3873
|
195 |
A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, Strongly interacting photons in a nonlinear cavity, Phys. Rev. Lett. 79(8), 1467 (1997)
|
196 |
J. K. Furdyna and J. Kossut (Eds.), Diluted Magnetic Semiconductors, Semiconductors and Semimetals, Vol. 25 New York: Academic Press, 1988
|
197 |
D. R. Yakovlev and W. Ossau, in: Introduction to the Physics of Diluted Magnetic Semiconductors, Springer Series in Materials Science, Vol. 144, edited by J. A. Gaj and J. Kossut, Berlin Heidelberg: Springer, 2010, pp 221–262
https://doi.org/10.1007/978-3-642-15856-8_7
|
198 |
R. C. Myers, M. Poggio, N. P. Stern, A. C. Gossard, and D. D. Awschalom, Antiferromagnetic s-d exchange coupling in GaMnAs, Phys. Rev. Lett. 95(1), 017204 (2005)
https://doi.org/10.1103/PhysRevLett.95.017204
|
199 |
N. P. Stern, R. C. Myers, M. Poggio, A. C. Gossard, and D. D. Awschalom, Confinement engineering of sd exchange interactions in Ga1−xMnxAs/AlyGa1−yAs quantum wells, Phys. Rev. B 75(4), 045329 (2007)
https://doi.org/10.1103/PhysRevB.75.045329
|
200 |
R. Beaulac, L. Schneider, P. I. Archer, G. Bacher, and D. R. Gamelin, Light-induced spontaneous magnetization in doped colloidal quantum dots, Science 325(5943), 973 (2009)
https://doi.org/10.1126/science.1174419
|
201 |
T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54(2), 437 (1982)
https://doi.org/10.1103/RevModPhys.54.437
|
202 |
U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE 90(6), 1022 (2002)
https://doi.org/10.1109/JPROC.2002.1021567
|
203 |
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Twodimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)
https://doi.org/10.1103/PhysRevLett.48.1559
|
204 |
Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, Bright, multicoloured light-emitting diodes based on quantum dots, Nat. Photon. 1(12), 717 (2007)
https://doi.org/10.1038/nphoton.2007.226
|
205 |
I. J. Kramer and E. H. Sargent, The architecture of colloidal quantum dot solar cells: Materials to devices, Chem. Rev. 114(1), 863 (2014)
https://doi.org/10.1021/cr400299t
|
206 |
H. M. Azzazy, M. M. Mansour, and S. C. Kazmierczak, From diagnostics to therapy: Prospects of quantum dots, Clin. Biochem. 40(13–14), 917 (2007)
https://doi.org/10.1016/j.clinbiochem.2007.05.018
|
207 |
J. Klinovaja and D. Loss, Spintronics in MoS2 monolayer quantum wires, Phys. Rev. B 88(7), 075404 (2013)
https://doi.org/10.1103/PhysRevB.88.075404
|
208 |
V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science 336(6084), 1003 (2012)
https://doi.org/10.1126/science.1222360
|
209 |
S. Pavlović and F. M. Peeters, Electronic properties of triangular and hexagonal MoS2 quantum dots, Phys. Rev. B 91, 155410 (2015)
https://doi.org/10.1103/PhysRevB.91.155410
|
210 |
L. Pei, S. Tao, S. Haibo, and X. Song, Structural stability, electronic and magnetic properties of MoS2 quantum dots based on the first principles, Solid State Commun. 218, 25 (2015)
https://doi.org/10.1016/j.ssc.2015.06.008
|
211 |
A. J. Pearce and G. Burkard, Electron spin relaxation in a transition-metal dichalcogenide quantum dot, 2D Materials 4, 025114 (2017)
|
212 |
M. Brooks and G. Burkard, Spin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayers, Phys. Rev. B 95(24), 245411 (2017)
https://doi.org/10.1103/PhysRevB.95.245411
|
213 |
S. Ono and T. Ogura, Theory of laterally confined two dimensional excitons, arXiv: 1801.06923 (2018)
|
214 |
G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, and T. Frauenheim, Structure and electronic properties of MoS2 nanotubes, Phys. Rev. Lett. 85(1), 146 (2000)
https://doi.org/10.1103/PhysRevLett.85.146
|
215 |
M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes, Science 292(5516), 479 (2001)
https://doi.org/10.1126/science.1059011
|
216 |
Z. Gan, L. Liu, H. Wu, Y. Hao, Y. Shan, X. Wu, and P. K. Chu, Quantum confinement effects across twodimensional planes in MoS2 quantum dots, Appl. Phys. Lett. 106(23), 233113 (2015)
https://doi.org/10.1063/1.4922551
|
217 |
D. Gopalakrishnan, D. Damien, B. Li, H. Gullappalli, V. K. Pillai, P. M. Ajayan, and M. M. Shaijumon, Electrochemical synthesis of luminescent MoS2 quantum dots, Chem. Commun. 51(29), 6293 (2015)
https://doi.org/10.1039/C4CC09826A
|
218 |
H. Jin, M. Ahn, S. Jeong, J. H. Han, D. Yoo, D. H. Son, and J. Cheon, Colloidal single-layer quantum dots with lateral confinement effects on 2D exciton, J. Am. Chem. Soc. 138(40), 13253 (2016)
https://doi.org/10.1021/jacs.6b06972
|
219 |
H. Jin, B. Baek, D. Kim, F. Wu, J. D. Batteas, J. Cheon, and D. H. Son, Effects of direct solvent-quantum dot interaction on the optical properties of colloidal monolayer WS2 quantum dots, Nano Lett. 17(12), 7471 (2017)
https://doi.org/10.1021/acs.nanolett.7b03381
|
220 |
H. Xu, Z. Ding, C. T. Nai, Y. Bao, F. Cheng, S. J. R. Tan, and K. P. Loh, Controllable synthesis of 2D and 1D MoS2 nanostructures on Au surface, Adv. Funct. Mater. 27, 1603887 (2017)
https://doi.org/10.1002/adfm.201603887
|
221 |
G. Wei, D. A. Czaplewski, E. J. Lenferink, T. K. Stanev, I. W. Jung, and N. P. Stern, Size-tunable lateral confinement in monolayer semiconductors, Sci. Rep. 7(1), 3324 (2017)
https://doi.org/10.1038/s41598-017-03594-z
|
222 |
G. Wei, E. J. Lenferink, D. A. Czaplewski, and N. P. Stern, Width-dependent photoluminescence and anisotropic Raman spectroscopy from monolayer MoS2 nanoribbons, arXiv: 1709.04001 (2017)
|
223 |
G. B. Liu, H. Pang, Y. Yao, and W. Yao, Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides, New J. Phys. 16(10), 105011 (2014)
https://doi.org/10.1088/1367-2630/16/10/105011
|
224 |
G. Wei, T. K. Stanev, D. A. Czewski, I. W. Jung, and N. P. Stern, Silicon-nitride photonic circuits interfaced with monolayer MoS2, Appl. Phys. Lett. 107(9), 091112 (2015)
https://doi.org/10.1063/1.4929779
|
225 |
J. Kim, X. Hong, C. Jin, S. F. Shi, C. Y. S. Chang, M. H. Chiu, L. J. Li, and F. Wang, Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers, Science 346(6214), 1205 (2014)
https://doi.org/10.1126/science.1258122
|
226 |
W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice, Nano Lett. 16(2), 1262 (2016)
https://doi.org/10.1021/acs.nanolett.5b04588
|
227 |
N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. Yeow, and T. Yu, Nonblinking, intense two-dimensional light emitter: Monolayer WS2 triangles, ACS Nano 7(12), 10985 (2013)
https://doi.org/10.1021/nn4046002
|
228 |
H. Wang, C. Zhang, and F. Rana, Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2, Nano Lett. 15(1), 339 (2015)
https://doi.org/10.1021/nl503636c
|
229 |
S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, Prospects for LED lighting, Nat. Photon. 3(4), 180 (2009)
https://doi.org/10.1038/nphoton.2009.32
|
230 |
T. Fujii, Y. Gao, R. Sharma, E. Hu, S. DenBaars, and S. Nakamura, Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening, Appl. Phys. Lett. 84(6), 855 (2004)
https://doi.org/10.1063/1.1645992
|
231 |
X. Gan, Y. Gao, K. F. Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, et al., Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity, Appl. Phys. Lett. 103(18), 181119 (2013)
https://doi.org/10.1063/1.4826679
|
232 |
S. Wu, S. Buckley, A. M. Jones, J. S. Ross, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, F. Hatami, J. Vučković, A. Majumdar, and X. D. Xu, Control of two-dimensional excitonic light emission via photonic crystal, 2D Materials 1, 011001 (2014)
|
233 |
S. Schwarz, S. Dufferwiel, P. Walker, F. Withers, A. Trichet, M. Sich, F. Li, E. Chekhovich, D. Borisenko, N. N. Kolesnikov, K. S. Novoselov, et al., Two-dimensional metal–chalcogenide films in tunable optical microcavities, Nano Lett. 14(12), 7003 (2014)
https://doi.org/10.1021/nl503312x
|
234 |
Y. J. Noori, Y. Cao, J. Roberts, C. Woodhead, R. Bernardo-Gavito, P. Tovee, and R. J. Young, Photonic crystals for enhanced light extraction from 2D materials, ACS Photon. 3(12), 2515 (2016)
https://doi.org/10.1021/acsphotonics.6b00779
|
235 |
J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E.Cubukcu, Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter, Nano Lett. 15(3), 1967 (2015)
https://doi.org/10.1021/nl5048303
|
236 |
T. Ren, P. Song, J. Chen, and K. P. Loh, Whisper gallery modes in monolayer tungsten disulfidehexagonal boron nitride optical cavity, ACS Photon. 5(2), 353 (2018)
https://doi.org/10.1021/acsphotonics.7b01245
|
237 |
S. Hammer, H. M. Mangold, A. E. Nguyen, D. Martinez-Ta, S. Naghibi Alvillar, L. Bartels, and H. J. Krenner, Scalable and transfer-free fabrication of MoS2/SiO2 hybrid nanophotonic cavity arrays with quality factors exceeding 4000, Sci. Rep. 7(1), 7251 (2017)
https://doi.org/10.1038/s41598-017-07379-2
|
238 |
S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, Monolayer semiconductor nanocavity lasers with ultralow thresholds, Nature 520(7545), 69 (2015)
https://doi.org/10.1038/nature14290
|
239 |
A. Alduino and M. Paniccia, Wiring electronics with light,Nat. Photon. 1(3), 153 (2007)
https://doi.org/10.1038/nphoton.2007.17
|
240 |
H. J. Caulfield and S. Dolev, Why future supercomputing requires optics, Nat. Photon. 4(5), 261 (2010)
https://doi.org/10.1038/nphoton.2010.94
|
241 |
E. Murphy, Enabling optical communication, Nat. Photon. 4(5), 287 (2010)
https://doi.org/10.1038/nphoton.2010.107
|
242 |
O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, Optically pumped two-dimensional MoS2 lasers operating at room-temperature, Nano Lett. 15(8), 5302 (2015)
https://doi.org/10.1021/acs.nanolett.5b01665
|
243 |
H. Fang, J. Liu, H. Li, L. Zhou, L. Liu, J. Li, X. Wang, T. F. Krauss, and Y. Wang, 1305 nm MoTe2-on-silicon Laser, arXiv: 1710.01591 (2017)
|
244 |
Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Ning, Room-temperature continuouswave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity, Nat. Nanotechnol. 12(10), 987 (2017)
https://doi.org/10.1038/nnano.2017.128
|
245 |
S. Strauf and F. Jahnke, Single quantum dot nanolaser, Laser & Photon. Rev. 5, 607 (2011)
https://doi.org/10.1002/lpor.201000039
|
246 |
C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69(23), 3314 (1992)
https://doi.org/10.1103/PhysRevLett.69.3314
|
247 |
R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, Measurement of cavitypolariton dispersion curve from angle-resolved photoluminescence experiments, Phys. Rev. Lett. 73(15), 2043 (1994)
https://doi.org/10.1103/PhysRevLett.73.2043
|
248 |
H. Deng, H. Haug, and Y. Yamamoto, Exciton-polariton Bose–Einstein condensation, Rev. Mod. Phys. 82(2), 1489 (2010)
https://doi.org/10.1103/RevModPhys.82.1489
|
249 |
H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons, Science 298(5591), 199 (2002)
https://doi.org/10.1126/science.1074464
|
250 |
J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. Keeling, F. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Bose–Einstein condensation of exciton polaritons, Nature 443(7110), 409 (2006)
https://doi.org/10.1038/nature05131
|
251 |
R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Bose-Einstein condensation of microcavity polaritons in a trap, Science 316(5827), 1007 (2007)
https://doi.org/10.1126/science.1140990
|
252 |
S. Christopoulos, G. B. H. Von Högersthal, A. Grundy, P. Lagoudakis, A. Kavokin, J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, Room-temperature polariton lasing in semiconductor microcavities, Phys. Rev. Lett. 98(12), 126405 (2007)
https://doi.org/10.1103/PhysRevLett.98.126405
|
253 |
J. Baumberg, A. Kavokin, S. Christopoulos, A. Grundy, R. Butté, G. Christmann, D. Solnyshkov, G. Malpuech, G. B. H. von Högersthal, E. Feltin, et al., Spontaneous polarization buildup in a room-temperature polariton laser, Phys. Rev. Lett. 101(13), 136409 (2008)
https://doi.org/10.1103/PhysRevLett.101.136409
|
254 |
S. Kéna-Cohen and S. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity, Nat. Photonics 4(6), 371 (2010)
https://doi.org/10.1038/nphoton.2010.86
|
255 |
T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, et al., Polariton lasing in a hybrid bulk ZnO microcavity, Appl. Phys. Lett. 99(16), 161104 (2011)
https://doi.org/10.1063/1.3650268
|
256 |
J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt, Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer, Nat. Mater. 13(3), 247 (2014)
https://doi.org/10.1038/nmat3825
|
257 |
T. C. Lu, Y. Y. Lai, Y. P. Lan, S. W. Huang, J. R. Chen, Y. C. Wu, W. F. Hsieh, and H. Deng, Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity, Opt. Express 20(5), 5530 (2012)
https://doi.org/10.1364/OE.20.005530
|
258 |
P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, Room temperature electrically injected polariton laser, Phys. Rev. Lett. 112(23), 236802 (2014)
https://doi.org/10.1103/PhysRevLett.112.236802
|
259 |
T. Liew, A. Kavokin, and I. Shelykh, Optical circuits based on polariton neurons in semiconductor microcavities, Phys. Rev. Lett. 101(1), 016402 (2008)
https://doi.org/10.1103/PhysRevLett.101.016402
|
260 |
A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, Exciton– polariton spin switches, Nat. Photon. 4(6), 361 (2010)
https://doi.org/10.1038/nphoton.2010.79
|
261 |
D. Sanvitto and S. Kéna-Cohen, The road towards polaritonic devices, Nat. Mater. 15(10), 1061 (2016)
https://doi.org/10.1038/nmat4668
|
262 |
S. Dufferwiel, S. Schwarz, F. Withers, A. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. Solnyshkov, et al., Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities, Nat. Commun. 6, 8579 (2015)
https://doi.org/10.1038/ncomms9579
|
263 |
M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, Fermi polaronpolaritons in charge-tunable atomically thin semiconductors, Nat. Phys. 13(3), 255 (2016)
|
264 |
S. Dufferwiel, T. Lyons, D. Solnyshkov, A. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. Smith, K. Novoselov, M. Skolnick, et al., Valley-addressable polaritons in atomically thin semiconductors, Nat. Photon. 11, 497 (2017)
https://doi.org/10.1038/nphoton.2017.125
|
265 |
L. C. Flatten, Z. He, D. M. Coles, A. A. P. Trichet, A. W. Powell, R. A. Taylor, J. H. Warner, and J. M. Smith, Room-temperature exciton-polaritons with twodimensional WS2, Sci. Rep. 6(1), 33134 (2016)
https://doi.org/10.1038/srep33134
|
266 |
L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2, Nat. Commun. 8, 14097 (2017)
https://doi.org/10.1038/ncomms14097
|
267 |
Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, Optical control of room-temperature valley polaritons, Nat. Photon. 11(8), 491 (2017)
https://doi.org/10.1038/nphoton.2017.121
|
268 |
X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, Control of coherently coupled exciton polaritons in monolayer Tungsten disulphide, Phys. Rev. Lett. 119(2), 027403 (2017)
https://doi.org/10.1103/PhysRevLett.119.027403
|
269 |
N. Lundt, S. Stoll, P. Nagler, A. Nalitov, S. Klembt, S. Betzold, J. Goddard, E. Frieling, A. Kavokin, C. Schüller, T. Korn, S. Höfling, and C. Schneider, Observation of macroscopic valley-polarized monolayer exciton-polaritons at room temperature, Phys. Rev. B 96(24), 241403 (2017)
https://doi.org/10.1103/PhysRevB.96.241403
|
270 |
L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun. 9, 713 (2018)
https://doi.org/10.1038/s41467-018-03188-x
|
271 |
M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Tamm plasmon polaritons: Slow and spatially compact light, Appl. Phys. Lett. 92(25), 251112 (2008)
https://doi.org/10.1063/1.2952486
|
272 |
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons, Appl. Phys. Lett. 110(5), 051101 (2017)
https://doi.org/10.1063/1.4974901
|
273 |
S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature, Nano Lett. 16(7), 4368 (2016)
https://doi.org/10.1021/acs.nanolett.6b01475
|
274 |
Z. Wang, R. Gogna, and H. Deng, What is the best planar cavity for maximizing coherent exciton-photon coupling, Appl. Phys. Lett. 111(6), 061102 (2017)
https://doi.org/10.1063/1.4997171
|
275 |
B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höing, and H. Deng, Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity, Light Sci. Appl. 3(1), e135 (2014)
https://doi.org/10.1038/lsa.2014.16
|
276 |
S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höing, and H. Deng, Coherent polariton laser, Phys. Rev. X 6(1), 011026 (2016)
https://doi.org/10.1103/PhysRevX.6.011026
|
277 |
G. Sallen, L. Bouet, X. Marie, G. Wang, C. Zhu, W. Han, Y. Lu, P. Tan, T. Amand, B. Liu, and B. Urbaszek, Robust optical emission polarization in MoS2 monolayers through selective valley excitation, Phys. Rev. B 86(8), 081301 (2012)
https://doi.org/10.1103/PhysRevB.86.081301
|
278 |
S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. Xu, Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization, ACS Nano 7(3), 2768 (2013)
https://doi.org/10.1021/nn4002038
|
279 |
M. Z. Maialle, E. A. de Andrada e Silva, and L. J. Sham, Exciton spin dynamics in quantum wells, Phys. Rev. B 47(23), 15776 (1993)
https://doi.org/10.1103/PhysRevB.47.15776
|
280 |
E. Palacios, S. Park, S. Butun, L. Lauhon, and K. Aydin, Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantenna, Appl. Phys. Lett. 111(3), 031101 (2017)
https://doi.org/10.1063/1.4993427
|
281 |
Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, et al., Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons, Nat. Nanotechnol. 12(9), 856 (2017)
https://doi.org/10.1038/nnano.2017.106
|
282 |
J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals, Nano Lett. 17(8), 4689 (2017)
https://doi.org/10.1021/acs.nanolett.7b01344
|
283 |
E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions, Science 311(5758), 189 (2006)
https://doi.org/10.1126/science.1114849
|
284 |
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater. 9(3), 193 (2010)
https://doi.org/10.1038/nmat2630
|
285 |
A. F. Koenderink, A. Alù, and A. Polman, Nanophotonics: Shrinking light-based technology, Science 348(6234), 516 (2015)
https://doi.org/10.1126/science.1261243
|
286 |
K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Ultrafast active plasmonics, Nat. Photon. 3(1), 55 (2009)
https://doi.org/10.1038/nphoton.2008.249
|
287 |
S. Palomba, M. Danckwerts, and L. Novotny, Nonlinear plasmonics with gold nanoparticle antennas, J. Opt. A 11(11), 114030 (2009)
https://doi.org/10.1088/1464-4258/11/11/114030
|
288 |
M. Kauranen and A. V. Zayats, Nonlinear plasmonics, Nat. Photon. 6(11), 737 (2012)
https://doi.org/10.1038/nphoton.2012.244
|
289 |
C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, Negative refraction, gain and nonlinear effects in hyperbolic metamaterials, Opt. Express 21(12), 15037 (2013)
https://doi.org/10.1364/OE.21.015037
|
290 |
P. Bharadwaj, B. Deutsch, and L. Novotny, Optical Antennas, Adv. Opt. Photon. 1(3), 438 (2009)
https://doi.org/10.1364/AOP.1.000438
|
291 |
L. Novotny and N. Van Hulst, Antennas for light, Nat. Photon. 5(2), 83 (2011)
https://doi.org/10.1038/nphoton.2010.237
|
292 |
A. F. Koenderink, Single-photon nanoantennas, ACS Photon. 4(4), 710 (2017)
https://doi.org/10.1021/acsphotonics.7b00061
|
293 |
A. Campion and P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev. 27(4), 241 (1998)
https://doi.org/10.1039/a827241z
|
294 |
A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, Surface-enhanced Raman scattering, J. Phys.: Condens. Matter 4(5), 1143 (1992)
https://doi.org/10.1088/0953-8984/4/5/001
|
295 |
P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Surface-enhanced Raman spectroscopy, Annu. Rev. Anal. Chem. 1(1), 601 (2008)
https://doi.org/10.1146/annurev.anchem.1.031207.112814
|
296 |
E. Palacios, S. Park, L. Lauhon, and K. Aydin, Identifying excitation and emission rate contributions to plasmon-enhanced photoluminescence from monolayer MoS2 using a tapered gold nanoantenna, ACS Photon. 4(7), 1602 (2017)
https://doi.org/10.1021/acsphotonics.7b00226
|
297 |
M. Wang, W. Li, L. Scarabelli, B. B. Rajeeva, M. Terrones, L. M. Liz-Marzán, D. Akinwande, and Y. Zheng, Plasmon–trion and plasmon–exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2, Nanoscale 9(37), 13947 (2017)
https://doi.org/10.1039/C7NR03909C
|
298 |
I. Abid, A. Bohloul, S. Najmaei, C. Avendano, H. L. Liu, R. Péchou, A. Mlayah, and J. Lou, Resonant surface plasmon–exciton interaction in hybrid MoSe2 @Au nanostructures, Nanoscale 8(15), 8151 (2016)
https://doi.org/10.1039/C6NR00829A
|
299 |
M. G. Lee, S. Yoo, T. Kim, and Q. H. Park, Large-area plasmon enhanced two-dimensional MoS2, Nanoscale 9(42), 16244 (2017)
https://doi.org/10.1039/C7NR04974A
|
300 |
J. Huang, G. M. Akselrod, T. Ming, J. Kong, and M. H. Mikkelsen, Tailored emission spectrum of 2D semiconductors using plasmonic nanocavities, ACS Photon. 5(2), 552 (2017)
https://doi.org/10.1021/acsphotonics.7b01085
|
301 |
I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures, ACS Photon. 4(7), 1653 (2017)
https://doi.org/10.1021/acsphotonics.6b00957
|
302 |
A. Boulesbaa, V. E. Babicheva, K. Wang, I. I. Kravchenko, M. W. Lin, M. Mahjouri-Samani, C. B. Jacobs, A. A. Puretzky, K. Xiao, I. Ivanov, et al., Ultrafast dynamics of metal plasmons induced by 2D semiconductor excitons in hybrid nanostructure arrays, ACS Photon. 3(12), 2389 (2016)
|
303 |
A. D. Johnson, F. Cheng, Y. Tsai, and C. K. Shih, Giant enhancement of defect-bound exciton luminescence and suppression of band-edge luminescence in monolayer WSe2–Ag plasmonic hybrid structures,Nano Lett. 17(7), 4317 (2017)
https://doi.org/10.1021/acs.nanolett.7b01364
|
304 |
Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, and Z. Fang, Tailoring MoS2 exciton-plasmon interaction by optical spin-orbit coupling, ACS Nano 11(2), 1165 (2016)
https://doi.org/10.1021/acsnano.6b06834
|
305 |
H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y.G. Roh, et al., Optical gain in MoS2 via coupling with nanostructured substrate: Fabry–Perot interference and plasmonic excitation, ACS Nano 10, 8192 (2016)
https://doi.org/10.1021/acsnano.6b03237
|
306 |
B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. C. Johnson, and R. Agarwal, Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice, Nano Lett. 17(7), 4541 (2017)
https://doi.org/10.1021/acs.nanolett.7b02245
|
307 |
M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity, ACS Photon. 5(1), 240 (2018)
https://doi.org/10.1021/acsphotonics.7b00717
|
308 |
M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. Pury, C. Groβe, B. Nijs, J. Mertens, et al, Strong-coupling of WSe2 in ultracompact plasmonic nanocavities at room temperature, Nat. Commun. 8(1), 1296 (2017)
https://doi.org/10.1038/s41467-017-01398-3
|
309 |
D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2, Nano Lett. 17(6), 3809 (2017)
https://doi.org/10.1021/acs.nanolett.7b01176
|
310 |
J. Cuadra, D. G. Baranov, M. Wersll, R. Verre, T. J. Antosiewicz, and T. Shegai, Observation of tunable charged exciton polaritons in hybrid monolayer WS2- plasmonic nanoantenna system, Nano Lett. 18(3), 1777 (2018)
https://doi.org/10.1021/acs.nanolett.7b04965
|
311 |
P. Gonçalves, L. Bertelsen, S. Xiao, and N. A. Mortensen, Plasmon-exciton polaritons in twodimensional semiconductor/metal interfaces, Phys. Rev. B 97(4), 041402 (2018)
https://doi.org/10.1103/PhysRevB.97.041402
|
312 |
J. H. Shirley, Solution of the Schrödinger equation with a hamiltonian periodic in time, Phys. Rev. 138, B979 (1965)
https://doi.org/10.1103/PhysRev.138.B979
|
313 |
E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, Valley-selective optical Stark effect in monolayer WS2, Nat. Mater. 14(3), 290 (2015)
https://doi.org/10.1038/nmat4156
|
314 |
E. J. Sie, C. H. Lui, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, Large, valley-exclusive Bloch–Siegert shift in monolayer WS2, Science 355(6329), 1066 (2017)
https://doi.org/10.1126/science.aal2241
|
315 |
T. LaMountain, H. Bergeron, I. Balla, T. K. Stanev, M. C. Hersam, and N. P. Stern, Valley-selective optical Stark effect probed by Kerr rotation, Phys. Rev. B 97(4), 045307 (2018)
https://doi.org/10.1103/PhysRevB.97.045307
|
316 |
S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M. H. Jo, and H. Choi, Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2, Nat. Commun. 7, 13569 (2016)
https://doi.org/10.1038/ncomms13569
|
317 |
A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. Masselink, and H. Morkoc, “Dressed excitons” in a multiple-quantum-well structure: Evidence for an optical stark effect with femtosecond response time, Phys. Rev. Lett. 56(25), 2748 (1986)
https://doi.org/10.1103/PhysRevLett.56.2748
|
318 |
A. Von Lehmen, D. S. Chemla, J. Heritage, and J. Zucker, Optical Stark effect on excitons in GaAs quantum wells, Opt. Lett. 11(10), 609 (1986)
https://doi.org/10.1364/OL.11.000609
|
319 |
W. Knox, D. Chemla, D. Miller, J. Stark, and S. Schmitt-Rink, Femtosecond ac Stark effect in semiconductor quantum wells: Extreme low- and high-intensity limits, Phys. Rev. Lett. 62(10), 1189 (1989)
https://doi.org/10.1103/PhysRevLett.62.1189
|
320 |
D. Chemla, W. Knox, D. Miller, S. Schmitt-Rink, J. Stark, and R. Zimmermann, The excitonic optical stark effect in semiconductor quantum wells probed with femtosecond optical pulses, J. Lumen. 44, 233 (1989)
https://doi.org/10.1016/0022-2313(89)90060-4
|
321 |
E. J. Sie, C. H. Lui, Y. H. Lee, J. Kong, and N. Gedik, Observation of intervalley biexcitonic optical Stark effect in monolayer WS2, Nano Lett. 16(12), 7421 (2016)
https://doi.org/10.1021/acs.nanolett.6b02998
|
322 |
E. J. Sie, A. J. Frenzel, Y. H. Lee, J. Kong, and N. Gedik, Intervalley biexcitons and many-body effects in monolayer MoS2, Phys. Rev. B 92(12), 125417 (2015)
https://doi.org/10.1103/PhysRevB.92.125417
|
323 |
T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Optical Stark effect in a quantum dot: Ultrafast control of single exciton polarizations, Phys. Rev. Lett. 92(15), 157401 (2004)
https://doi.org/10.1103/PhysRevLett.92.157401
|
324 |
D. D. Awschalom and N. Samarth, in: Semiconductor Spintronics and Quantum Computation, Springer, 2002, pp 147–193
https://doi.org/10.1007/978-3-662-05003-3_5
|
325 |
J. Gupta, R. Knobel, N. Samarth, and D. Awschalom, Ultrafast manipulation of electron spin coherence, Science 292(5526), 2458 (2001)
https://doi.org/10.1126/science.1061169
|
326 |
D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Complete quantum control of a single quantum dot spin using ultrafast optical pulses, Nature 456(7219), 218 (2008)
https://doi.org/10.1038/nature07530
|
327 |
J. Berezovsky, M. Mikkelsen, N. Stoltz, L. Coldren, and D. Awschalom, Picosecond coherent optical manipulation of a single electron spin in a quantum dot, Science 320(5874), 349 (2008)
https://doi.org/10.1126/science.1154798
|
328 |
M. Mikkelsen, J. Berezovsky, and D. Awschalom, Ultrafast optical manipulation of single electron spins in quantum dots, Solid State Commun. 149(35–36), 1451 (2009)
https://doi.org/10.1016/j.ssc.2009.04.038
|
329 |
D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
https://doi.org/10.1103/PhysRevA.57.120
|
330 |
G. Moody, C. K. Dass, K. Hao, C. H. Chen, L. J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun. 6(1), 8315 (2015)
https://doi.org/10.1038/ncomms9315
|
331 |
P. Dey, J. Paul, Z. Wang, C. Stevens, C. Liu, A. Romero, J. Shan, D. Hilton, and D. Karaiskaj, Optical coherence in atomic-monolayer transition-metal dichalcogenides limited by electron-phonon interactions, Phys. Rev. Lett. 116(12), 127402 (2016)
https://doi.org/10.1103/PhysRevLett.116.127402
|
332 |
L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, On-chip optical isolation in monolithically integrated non-reciprocal optical resonators, Nat. Photon. 5(12), 758 (2011)
https://doi.org/10.1038/nphoton.2011.270
|
333 |
E. J. Lenferink, G. Wei, and N. P. Stern, Coherent optical non-reciprocity in axisymmetric resonators, Opt. Express 22(13), 16099 (2014)
https://doi.org/10.1364/OE.22.016099
|
334 |
M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, Quantum optical circulator controlled by a single chirally coupled atom, Science 354(6319), 1577 (2016)
https://doi.org/10.1126/science.aaj2118
|
335 |
D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire, W. Yao, D. Xiao, K.M. C. Fu, and X. Xu, Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics, Sci. Adv. 3(5), e1603113 (2017)
https://doi.org/10.1126/sciadv.1603113
|
336 |
A. Kavokin, G. Malpuech, and M. Glazov, Optical spin Hall effect,Phys. Rev. Lett. 95(13), 136601 (2005)
https://doi.org/10.1103/PhysRevLett.95.136601
|
337 |
O. Bleu, D. Solnyshkov, and G. Malpuech, Optical valley Hall effect based on transitional metal dichalcogenide cavity polaritons, Phys. Rev. B 96(16), 165432 (2017)
https://doi.org/10.1103/PhysRevB.96.165432
|
338 |
T. Karzig, C. E. Bardyn, N. H. Lindner, and G. Refael, Topological polaritons, Phys. Rev. X 5(3), 031001 (2015)
https://doi.org/10.1103/PhysRevX.5.031001
|
339 |
Y. V. Kartashov and D. V. Skryabin, Bistable topological insulator with exciton-polaritons, Phys. Rev. Lett. 119(25), 253904 (2017)
https://doi.org/10.1103/PhysRevLett.119.253904
|
340 |
N. Gippius, I. Shelykh, D. Solnyshkov, S. Gavrilov, Y. G. Rubo, A. Kavokin, S. Tikhodeev, and G. Malpuech, Polarization multistability of cavity polaritons, Phys. Rev. Lett. 98(23), 236401 (2007)
https://doi.org/10.1103/PhysRevLett.98.236401
|
341 |
T. Paraïso, M. Wouters, Y. Léger, F. Morier-Genoud, and B. Deveaud-Plédran, Multistability of a coherent spin ensemble in a semiconductor microcavity, Nat. Mater. 9(8), 655 (2010)
https://doi.org/10.1038/nmat2787
|
342 |
V. M. Menon, L. I. Deych, and A. A. Lisyansky, Towards polaritonic logic circuits, Nat. Photon. 4(6), 345 (2010)
https://doi.org/10.1038/nphoton.2010.130
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|