|
|
Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3 |
Qi Pei1, Xiao-Cha Wang2, Ji-Jun Zou3, Wen-Bo Mi1( ) |
1. Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China 2. School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China 3. Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China |
|
|
Abstract The electronic structures and magnetic properties of strained monolayer MnPSe3 are investigated systematically via first-principles calculations. It is found that the magnetic ground state of monolayer MnPSe3 can be significantly affected by biaxial strain engineering, while the semiconducting characteristics are well-preserved. Owing to the sensitivity of the magnetic coupling towards structural deformation, a biaxial tensile strain of approximately 13% can lead to an antiferromagnetic (AFM)- ferromagnetic (FM) transition. The strain-dependent magnetic stability is mainly attributed to the competition of the direct AFM interaction and indirect FM superexchange interaction between the two nearest-neighbor Mn atoms. In addition, we find that FM MnPSe3 is an intrinsic half semiconductor with large spin exchange splitting in the conduction bands, which is crucial for the spin-polarized carrier injection and detection. The sensitive interdependence among the external stimuli, electronic structure, and magnetic coupling makes monolayer MnPSe3 a promising candidate for spintronics.
|
Keywords
two-dimensional semiconductor
MnPSe3
strain engineering
electronic structure
magnetic coupling
|
Corresponding Author(s):
Wen-Bo Mi
|
Issue Date: 25 May 2018
|
|
1 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
|
2 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
|
3 |
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
|
4 |
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
https://doi.org/10.1038/nmat1849
|
5 |
F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, Structural defects in graphene, ACS Nano 5(1), 26 (2011)
https://doi.org/10.1021/nn102598m
|
6 |
H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Room-temperature ferromagnetism in carbondoped ZnO, Phys. Rev. Lett. 99(12), 127201 (2007)
https://doi.org/10.1103/PhysRevLett.99.127201
|
7 |
C. Cao, M. Wu, J. Jiang, and H. P. Cheng, Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures, Phys. Rev. B 81(20), 205424 (2010)
https://doi.org/10.1103/PhysRevB.81.205424
|
8 |
M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992 (2014)
https://doi.org/10.1002/adma.201304138
|
9 |
S. Lebègue, T. Björkman, M. Klintenberg, R. M. Nieminen, and O. Eriksson, Two-dimensional materials from data filtering and ab initio calculations, Phys. Rev. X 3(3), 031002 (2013)
https://doi.org/10.1103/PhysRevX.3.031002
|
10 |
X. Li and J. Yang, CrXTe3 (X=Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors, J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 7071 (2014)
https://doi.org/10.1039/C4TC01193G
|
11 |
M. W. Lin, H. L. Zhuang, J. Yan, T. Z. Ward, A. A. Puretzky, C. M. Rouleau, Z. Gai, L. Liang, V. Meunier, B. G. Sumpter, P. Ganesh, P. R. C. Kent, D. B. Geohegan, D. G. Mandrus, and K. Xiao, Ultrathin nanosheets of CrSiTe3: A semiconducting two-dimensional ferromagnetic material, J. Mater. Chem. C 4(2), 315 (2016)
https://doi.org/10.1039/C5TC03463A
|
12 |
Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, and B. Huang, Evidence of the existence of magnetism in pristine VX2 monolayers (X= S, Se) and their strain-induced tunable magnetic properties, ACS Nano 6(2), 1695 (2012)
https://doi.org/10.1021/nn204667z
|
13 |
W. B. Zhang, Q. Qu, P. Zhu, and C. H. Lam, Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides, J. Mater. Chem. C 3(48), 12457 (2015)
https://doi.org/10.1039/C5TC02840J
|
14 |
X. X. Li, X. J. Wu, and J. L. Yang, Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping, J. Am. Chem. Soc. 136(31), 11065 (2014)
https://doi.org/10.1021/ja505097m
|
15 |
X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, MnPSe3 monolayer: a promising 2D visible-light photohydrolytic catalyst with high carrier mobility, Adv. Sci. 3(10), 1600062 (2016)
https://doi.org/10.1002/advs.201600062
|
16 |
B. L. Chittari, Y. Park, D. Lee, M. Han, A. H. Mac-Donald, E. Hwang, and J. Jung, Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides, Phys. Rev. B 94(18), 184428 (2016)
https://doi.org/10.1103/PhysRevB.94.184428
|
17 |
X. Li, T. Cao, Q. Niu, J. Shi, and J. Feng, Coupling the valley degree of freedom to antiferromagnetic order, Proc. Natl. Acad. Sci. USA 110(10), 3738 (2013)
https://doi.org/10.1073/pnas.1219420110
|
18 |
Q. Pei, Y. Song, X. Wang, J. Zou, and W. Mi, Superior electronic structure in two-dimensional MnPSe3/MoS2 van der Waals heterostructures, Sci. Rep. 7(1), 9504 (2017)
https://doi.org/10.1038/s41598-017-10145-z
|
19 |
K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy, Phys. Rev. Lett. 102(25), 256405 (2009)
https://doi.org/10.1103/PhysRevLett.102.256405
|
20 |
Y. Zhou, Z. Wang, P. Yang, X. Zu, L. Yang, X. Sun, and F. Gao, Tensile strain switched ferromagnetism in layered NbS2 and NbSe2, ACS Nano 6(11), 9727 (2012)
https://doi.org/10.1021/nn303198w
|
21 |
Y. C. Cheng, Q. Y. Zhang, and U. Schwingenschlögl, Valley polarization in magnetically doped single-layer transition-metal dichalcogenides, Phys. Rev. B 89(15), 155429 (2014)
https://doi.org/10.1103/PhysRevB.89.155429
|
22 |
K. Sawada, F. Ishii, M. Saito, S. Okada, and T. Kawai, Phase control of graphene nanoribbon by carrier doping: Appearance of noncollinear magnetism, Nano Lett. 9(1), 269 (2009)
https://doi.org/10.1021/nl8028569
|
23 |
F. Li and Z. Chen, Tuning electronic and magnetic properties of MoO3 sheets by cutting, hydrogenation, and external strain: A computational investigation, Nanoscale 5(12), 5321 (2013)
https://doi.org/10.1039/c3nr33009e
|
24 |
H. H. Pérez-Garza, E. W. Kievit, G. F. Schneider, and U. Staufer, Highly strained graphene samples of varying thickness and comparison of their behavior, Nanotechnology 25(46), 465708 (2014)
https://doi.org/10.1088/0957-4484/25/46/465708
|
25 |
S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano 5(12), 9703 (2011)
https://doi.org/10.1021/nn203879f
|
26 |
X. Chen, J. Qi, and D. Shi, Strain-engineering of magnetic coupling in two-dimensional magnetic semiconductor CrSiTe3: competition of direct exchange interaction and superexchange interaction, Phys. Lett. A 379(1–2), 60 (2015)
https://doi.org/10.1016/j.physleta.2014.10.042
|
27 |
Y. Ma, Y. Dai, M. Guo, C. Niu, L. Yu, and B. Huang, Strain-induced magnetic transitions in half-fluorinated single layers of BN, GaN and graphene, Nanoscale 3(5), 2301 (2011)
https://doi.org/10.1039/c1nr10167f
|
28 |
L. Kou, C. Tang, W. Guo, and C. Chen, Tunable magnetism in strained graphene with topological line defect, ACS Nano 5(2), 1012 (2011)
https://doi.org/10.1021/nn1024175
|
29 |
F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, Stretchable graphene: A close look at fundamental parameters through biaxial straining, Nano Lett. 10(9), 3453 (2010)
https://doi.org/10.1021/nl101533x
|
30 |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
31 |
G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
|
32 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
33 |
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+Ustudy, Phys. Rev. B 57(3), 1505 (1998)
https://doi.org/10.1103/PhysRevB.57.1505
|
34 |
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
https://doi.org/10.1002/jcc.20495
|
35 |
V. Grasso and L. Silipigni, Optical absorption and reflectivity study of the layered MnPSe3 seleniophosphate, J. Opt. Soc. Am. B 16(1), 132 (1999)
https://doi.org/10.1364/JOSAB.16.000132
|
36 |
A. Wiedenmann, J. Rossat-Mignod, A. Louisy, R. Brec, and J. Rouxel, Neutron diffraction study of the layered compounds MnPSe3 and FePSe3, Solid State Commun. 40(12), 1067 (1981)
https://doi.org/10.1016/0038-1098(81)90253-2
|
37 |
T. Zhu and J. Li, Ultra-strength materials, Prog. Mater. Sci. 55(7), 710 (2010)
https://doi.org/10.1016/j.pmatsci.2010.04.001
|
38 |
A. R. Wildes, B. Roessli, B. Lebech, and K. W. Godfrey, Spin waves and the critical behaviour of the magnetization in., J. Phys.: Condens. Matter 10(28), 6417 (1998)
https://doi.org/10.1088/0953-8984/10/28/020
|
39 |
K. Okuda, K. Kurosawa, S. Saito, M. Honda, Z. Yu, and M. Date, Magnetic properties of layered compound MnPS3, J. Phys. Soc. Jpn. 55(12), 4456 (1986)
https://doi.org/10.1143/JPSJ.55.4456
|
40 |
N. Sivadas, M. W. Daniels, R. H. Swendsen, S. Okamoto, and D. Xiao, Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers, Phys. Rev. B 91(23), 235425 (2015)
https://doi.org/10.1103/PhysRevB.91.235425
|
41 |
J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3, Phys. Rev. 100(2), 564 (1955)
https://doi.org/10.1103/PhysRev.100.564
|
42 |
J. Kanamori, Crystal distortion in magnetic compounds, J. Appl. Phys. 31(5), S14 (1960)
https://doi.org/10.1063/1.1984590
|
43 |
M. A. Subramanian, A. P. Ramirez, and W. J. Marshall, Structural tuning of ferromagnetism in a 3D cuprate perovskite, Phys. Rev. Lett. 82(7), 1558 (1999)
https://doi.org/10.1103/PhysRevLett.82.1558
|
44 |
W. B. Zhang, Q. Qu, P. Zhu, and C. H. Lam, Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides, J. Mater. Chem. C 3(48), 12457 (2015)
https://doi.org/10.1039/C5TC02840J
|
45 |
M. Joe, H. Lee, M. M. Alyörük, J. Lee, S. Y. Kim, C. Lee, and J. H. Lee, A comprehensive study of piezomagnetic response in CrPS4 monolayer: Mechanical, electronic properties and magnetic ordering under strains, J. Phys.: Condens. Matter 29(40), 405801 (2017)
https://doi.org/10.1088/1361-648X/aa80c5
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|