Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (4) : 137105    https://doi.org/10.1007/s11467-018-0796-9
RESEARCH ARTICLE
Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3
Qi Pei1, Xiao-Cha Wang2, Ji-Jun Zou3, Wen-Bo Mi1()
1. Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China
2. School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China
3. Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
 Download: PDF(20403 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The electronic structures and magnetic properties of strained monolayer MnPSe3 are investigated systematically via first-principles calculations. It is found that the magnetic ground state of monolayer MnPSe3 can be significantly affected by biaxial strain engineering, while the semiconducting characteristics are well-preserved. Owing to the sensitivity of the magnetic coupling towards structural deformation, a biaxial tensile strain of approximately 13% can lead to an antiferromagnetic (AFM)- ferromagnetic (FM) transition. The strain-dependent magnetic stability is mainly attributed to the competition of the direct AFM interaction and indirect FM superexchange interaction between the two nearest-neighbor Mn atoms. In addition, we find that FM MnPSe3 is an intrinsic half semiconductor with large spin exchange splitting in the conduction bands, which is crucial for the spin-polarized carrier injection and detection. The sensitive interdependence among the external stimuli, electronic structure, and magnetic coupling makes monolayer MnPSe3 a promising candidate for spintronics.

Keywords two-dimensional semiconductor      MnPSe3      strain engineering      electronic structure      magnetic coupling     
Corresponding Author(s): Wen-Bo Mi   
Issue Date: 25 May 2018
 Cite this article:   
Qi Pei,Xiao-Cha Wang,Ji-Jun Zou, et al. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0796-9
https://academic.hep.com.cn/fop/EN/Y2018/V13/I4/137105
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
3 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
4 A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
https://doi.org/10.1038/nmat1849
5 F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, Structural defects in graphene, ACS Nano 5(1), 26 (2011)
https://doi.org/10.1021/nn102598m
6 H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Room-temperature ferromagnetism in carbondoped ZnO, Phys. Rev. Lett. 99(12), 127201 (2007)
https://doi.org/10.1103/PhysRevLett.99.127201
7 C. Cao, M. Wu, J. Jiang, and H. P. Cheng, Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures, Phys. Rev. B 81(20), 205424 (2010)
https://doi.org/10.1103/PhysRevB.81.205424
8 M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992 (2014)
https://doi.org/10.1002/adma.201304138
9 S. Lebègue, T. Björkman, M. Klintenberg, R. M. Nieminen, and O. Eriksson, Two-dimensional materials from data filtering and ab initio calculations, Phys. Rev. X 3(3), 031002 (2013)
https://doi.org/10.1103/PhysRevX.3.031002
10 X. Li and J. Yang, CrXTe3 (X=Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors, J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 7071 (2014)
https://doi.org/10.1039/C4TC01193G
11 M. W. Lin, H. L. Zhuang, J. Yan, T. Z. Ward, A. A. Puretzky, C. M. Rouleau, Z. Gai, L. Liang, V. Meunier, B. G. Sumpter, P. Ganesh, P. R. C. Kent, D. B. Geohegan, D. G. Mandrus, and K. Xiao, Ultrathin nanosheets of CrSiTe3: A semiconducting two-dimensional ferromagnetic material, J. Mater. Chem. C 4(2), 315 (2016)
https://doi.org/10.1039/C5TC03463A
12 Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, and B. Huang, Evidence of the existence of magnetism in pristine VX2 monolayers (X= S, Se) and their strain-induced tunable magnetic properties, ACS Nano 6(2), 1695 (2012)
https://doi.org/10.1021/nn204667z
13 W. B. Zhang, Q. Qu, P. Zhu, and C. H. Lam, Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides, J. Mater. Chem. C 3(48), 12457 (2015)
https://doi.org/10.1039/C5TC02840J
14 X. X. Li, X. J. Wu, and J. L. Yang, Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping, J. Am. Chem. Soc. 136(31), 11065 (2014)
https://doi.org/10.1021/ja505097m
15 X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, MnPSe3 monolayer: a promising 2D visible-light photohydrolytic catalyst with high carrier mobility, Adv. Sci. 3(10), 1600062 (2016)
https://doi.org/10.1002/advs.201600062
16 B. L. Chittari, Y. Park, D. Lee, M. Han, A. H. Mac-Donald, E. Hwang, and J. Jung, Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides, Phys. Rev. B 94(18), 184428 (2016)
https://doi.org/10.1103/PhysRevB.94.184428
17 X. Li, T. Cao, Q. Niu, J. Shi, and J. Feng, Coupling the valley degree of freedom to antiferromagnetic order, Proc. Natl. Acad. Sci. USA 110(10), 3738 (2013)
https://doi.org/10.1073/pnas.1219420110
18 Q. Pei, Y. Song, X. Wang, J. Zou, and W. Mi, Superior electronic structure in two-dimensional MnPSe3/MoS2 van der Waals heterostructures, Sci. Rep. 7(1), 9504 (2017)
https://doi.org/10.1038/s41598-017-10145-z
19 K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy, Phys. Rev. Lett. 102(25), 256405 (2009)
https://doi.org/10.1103/PhysRevLett.102.256405
20 Y. Zhou, Z. Wang, P. Yang, X. Zu, L. Yang, X. Sun, and F. Gao, Tensile strain switched ferromagnetism in layered NbS2 and NbSe2, ACS Nano 6(11), 9727 (2012)
https://doi.org/10.1021/nn303198w
21 Y. C. Cheng, Q. Y. Zhang, and U. Schwingenschlögl, Valley polarization in magnetically doped single-layer transition-metal dichalcogenides, Phys. Rev. B 89(15), 155429 (2014)
https://doi.org/10.1103/PhysRevB.89.155429
22 K. Sawada, F. Ishii, M. Saito, S. Okada, and T. Kawai, Phase control of graphene nanoribbon by carrier doping: Appearance of noncollinear magnetism, Nano Lett. 9(1), 269 (2009)
https://doi.org/10.1021/nl8028569
23 F. Li and Z. Chen, Tuning electronic and magnetic properties of MoO3 sheets by cutting, hydrogenation, and external strain: A computational investigation, Nanoscale 5(12), 5321 (2013)
https://doi.org/10.1039/c3nr33009e
24 H. H. Pérez-Garza, E. W. Kievit, G. F. Schneider, and U. Staufer, Highly strained graphene samples of varying thickness and comparison of their behavior, Nanotechnology 25(46), 465708 (2014)
https://doi.org/10.1088/0957-4484/25/46/465708
25 S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano 5(12), 9703 (2011)
https://doi.org/10.1021/nn203879f
26 X. Chen, J. Qi, and D. Shi, Strain-engineering of magnetic coupling in two-dimensional magnetic semiconductor CrSiTe3: competition of direct exchange interaction and superexchange interaction, Phys. Lett. A 379(1–2), 60 (2015)
https://doi.org/10.1016/j.physleta.2014.10.042
27 Y. Ma, Y. Dai, M. Guo, C. Niu, L. Yu, and B. Huang, Strain-induced magnetic transitions in half-fluorinated single layers of BN, GaN and graphene, Nanoscale 3(5), 2301 (2011)
https://doi.org/10.1039/c1nr10167f
28 L. Kou, C. Tang, W. Guo, and C. Chen, Tunable magnetism in strained graphene with topological line defect, ACS Nano 5(2), 1012 (2011)
https://doi.org/10.1021/nn1024175
29 F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, Stretchable graphene: A close look at fundamental parameters through biaxial straining, Nano Lett. 10(9), 3453 (2010)
https://doi.org/10.1021/nl101533x
30 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
31 G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
32 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
33 S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+Ustudy, Phys. Rev. B 57(3), 1505 (1998)
https://doi.org/10.1103/PhysRevB.57.1505
34 S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
https://doi.org/10.1002/jcc.20495
35 V. Grasso and L. Silipigni, Optical absorption and reflectivity study of the layered MnPSe3 seleniophosphate, J. Opt. Soc. Am. B 16(1), 132 (1999)
https://doi.org/10.1364/JOSAB.16.000132
36 A. Wiedenmann, J. Rossat-Mignod, A. Louisy, R. Brec, and J. Rouxel, Neutron diffraction study of the layered compounds MnPSe3 and FePSe3, Solid State Commun. 40(12), 1067 (1981)
https://doi.org/10.1016/0038-1098(81)90253-2
37 T. Zhu and J. Li, Ultra-strength materials, Prog. Mater. Sci. 55(7), 710 (2010)
https://doi.org/10.1016/j.pmatsci.2010.04.001
38 A. R. Wildes, B. Roessli, B. Lebech, and K. W. Godfrey, Spin waves and the critical behaviour of the magnetization in., J. Phys.: Condens. Matter 10(28), 6417 (1998)
https://doi.org/10.1088/0953-8984/10/28/020
39 K. Okuda, K. Kurosawa, S. Saito, M. Honda, Z. Yu, and M. Date, Magnetic properties of layered compound MnPS3, J. Phys. Soc. Jpn. 55(12), 4456 (1986)
https://doi.org/10.1143/JPSJ.55.4456
40 N. Sivadas, M. W. Daniels, R. H. Swendsen, S. Okamoto, and D. Xiao, Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers, Phys. Rev. B 91(23), 235425 (2015)
https://doi.org/10.1103/PhysRevB.91.235425
41 J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3, Phys. Rev. 100(2), 564 (1955)
https://doi.org/10.1103/PhysRev.100.564
42 J. Kanamori, Crystal distortion in magnetic compounds, J. Appl. Phys. 31(5), S14 (1960)
https://doi.org/10.1063/1.1984590
43 M. A. Subramanian, A. P. Ramirez, and W. J. Marshall, Structural tuning of ferromagnetism in a 3D cuprate perovskite, Phys. Rev. Lett. 82(7), 1558 (1999)
https://doi.org/10.1103/PhysRevLett.82.1558
44 W. B. Zhang, Q. Qu, P. Zhu, and C. H. Lam, Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides, J. Mater. Chem. C 3(48), 12457 (2015)
https://doi.org/10.1039/C5TC02840J
45 M. Joe, H. Lee, M. M. Alyörük, J. Lee, S. Y. Kim, C. Lee, and J. H. Lee, A comprehensive study of piezomagnetic response in CrPS4 monolayer: Mechanical, electronic properties and magnetic ordering under strains, J. Phys.: Condens. Matter 29(40), 405801 (2017)
https://doi.org/10.1088/1361-648X/aa80c5
[1] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[2] Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄). Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study[J]. Front. Phys. , 2018, 13(2): 137102-.
[3] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[4] Ze-Lian Wang,Wen-Hui Xie,Yong-Hong Zhao. Tunable band structure and effective mass of disordered chalcopyrite[J]. Front. Phys. , 2017, 12(1): 127103-.
[5] Bakhtiar Ul Haq, Rashid Ahmed, Galila Abdellatif, Amiruddin Shaari, Faheem K. Butt, Mohammed Benali Kanoun, Souraya Goumri-Said. Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations[J]. Front. Phys. , 2016, 11(1): 117101-.
[6] Feng-Bin Liu (刘峰斌), Jing-Lin Li (李景林), Wen-Bin Chen (陈文彬), Yan Cui (崔岩), Zhi-Wei Jiao (焦志伟), Hong-Juan Yan (阎红娟), Min Qu (屈敏), Jie-Jian Di (狄杰建). Geometries and electronic structures of the hydrogenated diamond (100) surface upon exposure to active ions: A first principles study[J]. Front. Phys. , 2016, 11(1): 116804-.
[7] Qing-Xiao Zhou, Chao-Yang Wang, Zhi-Bing Fu, Yong-Jian Tang, Hong Zhang. Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study[J]. Front. Phys. , 2014, 9(2): 200-209.
[8] Zhen Chen, Rui-Juan Xiao, Chao Ma, Yuan-Bin Qin, Hong-Long Shi, Zhi-Wei Wang, Yuan-Jun Song, Zhen Wang, Huan-Fang Tian, Huai-Xin Yang, Jian-Qi Li. Electronic structure of YMn2O5 studied by EELS and first-principles calculations[J]. Front. Phys. , 2012, 7(4): 429-434.
[9] Wei-dong Sheng, Marek Korkusinski, Alev Devrim Gü?lü, Michal Zielinski, Pawel Potasz, Eugene S. Kadantsev, Oleksandr Voznyy, Pawel Hawrylak. Electronic and optical properties of semiconductor and graphene quantum dots[J]. Front. Phys. , 2012, 7(3): 328-352.
[10] Dai-xiang Mou, Lin Zhao, Xing-jiang Zhou. Structural, magnetic and electronic properties of the iron–chalcogenide AxFe2-ySe2 (A=K, Cs, Rb, and Tl, etc.) superconductors[J]. Front. Phys. , 2011, 6(4): 410-428.
[11] Zi-jing DING (丁子敬), Yang JIAO (焦扬), Sheng MENG (孟胜). Quantum simulation of molecular interaction and dynamics at surfaces[J]. Front. Phys. , 2011, 6(3): 294-308.
[12] Feng-jie MA(马锋杰), Zhong-yi LU(卢仲毅), Tao XIANG(向涛). Electronic structures of ternary iron arsenides A Fe 2 As 2 ( A = Ba, Ca, or Sr)[J]. Front. Phys. , 2010, 5(2): 150-160.
[13] Xing-jiang ZHOU (周兴江), Guo-dong LIU (刘国东), Hai-yun LIU (刘海云), Lin ZHAO (赵林), Wen-tao ZHANG (张文涛), Xiao-wen JIA (贾小文), Jian-qiao MENG (孟建桥), . Band structure, Fermi surface, and superconducting gap in FeAs-based superconductors revealed by angle-resolved photoemission spectroscopy[J]. Front. Phys. , 2009, 4(4): 427-432.
[14] Bin GAO (高斌), Jun JIANG (江俊), Yi LUO (罗毅). Simulation of electronic structure of nanomaterials by central insertion scheme[J]. Front Phys Chin, 2009, 4(3): 307-314.
[15] Yi DING (丁一), Jun NI (倪军). Electronic properties of boron nanotubes with axial strain[J]. Front Phys Chin, 2009, 4(3): 383-388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed