|
|
Tunable band structure and effective mass of disordered chalcopyrite |
Ze-Lian Wang1,Wen-Hui Xie2,Yong-Hong Zhao1( ) |
1. College of Physics and Electronic Engineering, Institute of Solid State Physics, Sichuan Normal University, Chengdu 610068, China 2. Department of Physics, East China Normal University, Shanghai 200062, China |
|
|
Abstract The band structure and effective mass of disordered chalcopyrite photovoltaic materials Cu1−xAgxGaX2 (X = S, Se) are investigated by density functional theory. Special quasirandom structures are used to mimic local atomic disorders at Cu/Ag sites. A local density plus correction method is adopted to obtain correct semiconductor band gaps for all compounds. The bandgap anomaly can be seen for both sulfides and selenides, where the gap values of Ag compounds are larger than those of Cu compounds. Band gaps can be modulated from 1.63 to 1.78 eV for Cu1−xAgxGaSe2, and from 2.33 to 2.64 eV for Cu1−xAgxGaS2. The band gap minima and maxima occur at around x= 0.5 and x= 1, respectively, for both sulfides and selenides. In order to show the transport properties of Cu1−xAgxGaX2, the effective mass is shown as a function of disordered Ag concentration. Finally, detailed band structures are shown to clarify the phonon momentum needed by the fundamental indirect-gap transitions. These results should be helpful in designing high-efficiency photovoltaic devices, with both better absorption and high mobility, by Ag-doping in CuGaX2.
|
Keywords
disorder
electronic structure
effective mass
|
Corresponding Author(s):
Yong-Hong Zhao
|
Issue Date: 19 December 2016
|
|
1 |
N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater. 13(9), 897 (2014)
https://doi.org/10.1038/nmat4014
|
2 |
M. Liu, M. B. Johnston, and H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501(7467), 395 (2013)
https://doi.org/10.1038/nature12509
|
3 |
H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, H. You, Y. Liu, and Y. Yang, Interface engineering of highly efficient perovskite solar cells, Science 345(6196), 542 (2014)
https://doi.org/10.1126/science.1254050
|
4 |
S. Chen, A. Walsh, X. G. Gong, and S. H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers, Adv. Mater. 25(11), 1522 (2013)
https://doi.org/10.1002/adma.201203146
|
5 |
M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, Synthesis of CuInS2, CuInSe2, and Cu(InxGa1−x)Se2(CIGS) nanocrystal “inks” for printable photovoltaics, J. Am. Chem. Soc. 130(49), 16770 (2008)
https://doi.org/10.1021/ja805845q
|
6 |
M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables (Version 45), Prog. Photon.: Res. Appl. 23(1), 1 (2015)
https://doi.org/10.1002/pip.2573
|
7 |
S. Abermann, Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells, Sol. Energy 94, 37 (2013)
https://doi.org/10.1016/j.solener.2013.04.017
|
8 |
T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system, J. Sol. Energy Eng. 133(4), 041014 (2011)
https://doi.org/10.1115/1.4004708
|
9 |
B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, Band-gap tailoring of ZnO by means of heavy Al doping, Phys. Rev. B 37(17), 10244 (1988)
https://doi.org/10.1103/PhysRevB.37.10244
|
10 |
X. Nie, S. H. Wei, and S. B. Zhang, Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides, Phys. Rev. Lett. 88(6), 066405 (2002)
https://doi.org/10.1103/PhysRevLett.88.066405
|
11 |
M. Cardona, Electron effective masses of InAs and GaAs as a function of temperature and doping, Phys. Rev. 121(3), 752 (1961)
https://doi.org/10.1103/PhysRev.121.752
|
12 |
J. Pohl and K. Albe, Intrinsic point defects in CuInSe2 and CuGaSe2 as seen via screened-exchange hybrid density functional theory, Phys. Rev. B 87(24), 245203 (2013)
https://doi.org/10.1103/PhysRevB.87.245203
|
13 |
A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125(22), 224106 (2006)
https://doi.org/10.1063/1.2404663
|
14 |
M. S.Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34(8), 5390 (1986)
https://doi.org/10.1103/PhysRevB.34.5390
|
15 |
F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchangecorrelation potential, Phys. Rev. Lett. 102(22), 226401 (2009)
https://doi.org/10.1103/PhysRevLett.102.226401
|
16 |
J. Srour, M. Badawi, F. El Haj Hassan, and A. V. Postnikov, Crystal structure and energy bands of (Ga/In)Se and Cu(In,Ga)Se2 semiconductors in comparison, Phys. Status Solidi B Basic Res. 253(8), 1472 (2016)
https://doi.org/10.1002/pssb.201552776
|
17 |
Semiconductors: Data Handbook, 3rd Ed., edited by O. Madelung, Berlin: Springer, 2014
|
18 |
S. Chen, X. G. Gong, and S. H. Wei, Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2 (X= S and Se) and their alloys, Phys. Rev. B 75(20), 205209 (2007)
https://doi.org/10.1103/PhysRevB.75.205209
|
19 |
H. Mirhosseini, H. Kiss, and C. Felser, Behavior of S 3 grain boundaries in CuInSe2 and CuGaSe2 photovoltaic absorbers revealed by first-principles hybrid functional calculations, Phys. Rev. Appl. 4(6), 064005 (2015)
https://doi.org/10.1103/PhysRevApplied.4.064005
|
20 |
A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, Special quasirandom structures, Phys. Rev. Lett. 65(3), 353 (1990)
https://doi.org/10.1103/PhysRevLett.65.353
|
21 |
S. H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger, Electronic properties of random alloys: Special quasirandom structures, Phys. Rev. B 42(15), 9622 (1990)
https://doi.org/10.1103/PhysRevB.42.9622
|
22 |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
23 |
D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45, 566 (1980)
https://doi.org/10.1103/PhysRevLett.45.566
|
24 |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
|
25 |
T. Maeda and T. Wada, First-principles calculation of defect formation energy in chalcopyrite-type CuInSe2, CuGaSe2 and CuAlSe2, J. Phys. Chem. Solids 66(11), 1924 (2005)
https://doi.org/10.1016/j.jpcs.2005.09.067
|
26 |
G. Boyd, H. Kasper, and J. McFee, Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients, IEEE J. Quantum Electron. 7(12), 563 (1971)
https://doi.org/10.1109/JQE.1971.1076588
|
27 |
B. Tell and H. M. Kasper, Optical and electrical properties of AgGaS2 and AgGaSe2, Phys. Rev. B 4(12), 4455 (1971)
https://doi.org/10.1103/PhysRevB.4.4455
|
28 |
J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
https://doi.org/10.1103/PhysRevB.63.245407
|
29 |
Y. B. Hu, Y. H. Zhao, and X. F. Wang, A computational investigation of topological insulator Bi2Se3 film, Front. Phys. 9(6), 760 (2014)
https://doi.org/10.1007/s11467-014-0441-1
|
30 |
W. Ji, H. Q. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9(6), 671 (2014)
https://doi.org/10.1007/s11467-014-0458-5
|
31 |
S. H. Wei and A. Zunger, Fingerprints of CuPt ordering in III-V semiconductor alloys: Valence-band splittings, band-gap reduction, and X-ray structure factors, Phys. Rev. B 57(15), 8983 (1998)
https://doi.org/10.1103/PhysRevB.57.8983
|
32 |
B. Tell and P. M. Bridenbaugh, Aspects of the band structure of CuGaS2 and CuGaSe2, Phys. Rev. B 12(8), 3330 (1975)
https://doi.org/10.1103/PhysRevB.12.3330
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|