Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (1) : 127103    https://doi.org/10.1007/s11467-016-0639-5
RESEARCH ARTICLE
Tunable band structure and effective mass of disordered chalcopyrite
Ze-Lian Wang1,Wen-Hui Xie2,Yong-Hong Zhao1()
1. College of Physics and Electronic Engineering, Institute of Solid State Physics, Sichuan Normal University, Chengdu 610068, China
2. Department of Physics, East China Normal University, Shanghai 200062, China
 Download: PDF(1213 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The band structure and effective mass of disordered chalcopyrite photovoltaic materials Cu1−xAgxGaX2 (X = S, Se) are investigated by density functional theory. Special quasirandom structures are used to mimic local atomic disorders at Cu/Ag sites. A local density plus correction method is adopted to obtain correct semiconductor band gaps for all compounds. The bandgap anomaly can be seen for both sulfides and selenides, where the gap values of Ag compounds are larger than those of Cu compounds. Band gaps can be modulated from 1.63 to 1.78 eV for Cu1−xAgxGaSe2, and from 2.33 to 2.64 eV for Cu1−xAgxGaS2. The band gap minima and maxima occur at around x= 0.5 and x= 1, respectively, for both sulfides and selenides. In order to show the transport properties of Cu1−xAgxGaX2, the effective mass is shown as a function of disordered Ag concentration. Finally, detailed band structures are shown to clarify the phonon momentum needed by the fundamental indirect-gap transitions. These results should be helpful in designing high-efficiency photovoltaic devices, with both better absorption and high mobility, by Ag-doping in CuGaX2.

Keywords disorder      electronic structure      effective mass     
Corresponding Author(s): Yong-Hong Zhao   
Issue Date: 19 December 2016
 Cite this article:   
Ze-Lian Wang,Wen-Hui Xie,Yong-Hong Zhao. Tunable band structure and effective mass of disordered chalcopyrite[J]. Front. Phys. , 2017, 12(1): 127103.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0639-5
https://academic.hep.com.cn/fop/EN/Y2017/V12/I1/127103
1 N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater. 13(9), 897 (2014)
https://doi.org/10.1038/nmat4014
2 M. Liu, M. B. Johnston, and H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501(7467), 395 (2013)
https://doi.org/10.1038/nature12509
3 H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, H. You, Y. Liu, and Y. Yang, Interface engineering of highly efficient perovskite solar cells, Science 345(6196), 542 (2014)
https://doi.org/10.1126/science.1254050
4 S. Chen, A. Walsh, X. G. Gong, and S. H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers, Adv. Mater. 25(11), 1522 (2013)
https://doi.org/10.1002/adma.201203146
5 M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, Synthesis of CuInS2, CuInSe2, and Cu(InxGa1−x)Se2(CIGS) nanocrystal “inks” for printable photovoltaics, J. Am. Chem. Soc. 130(49), 16770 (2008)
https://doi.org/10.1021/ja805845q
6 M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables (Version 45), Prog. Photon.: Res. Appl. 23(1), 1 (2015)
https://doi.org/10.1002/pip.2573
7 S. Abermann, Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells, Sol. Energy 94, 37 (2013)
https://doi.org/10.1016/j.solener.2013.04.017
8 T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system, J. Sol. Energy Eng. 133(4), 041014 (2011)
https://doi.org/10.1115/1.4004708
9 B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, Band-gap tailoring of ZnO by means of heavy Al doping, Phys. Rev. B 37(17), 10244 (1988)
https://doi.org/10.1103/PhysRevB.37.10244
10 X. Nie, S. H. Wei, and S. B. Zhang, Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides, Phys. Rev. Lett. 88(6), 066405 (2002)
https://doi.org/10.1103/PhysRevLett.88.066405
11 M. Cardona, Electron effective masses of InAs and GaAs as a function of temperature and doping, Phys. Rev. 121(3), 752 (1961)
https://doi.org/10.1103/PhysRev.121.752
12 J. Pohl and K. Albe, Intrinsic point defects in CuInSe2 and CuGaSe2 as seen via screened-exchange hybrid density functional theory, Phys. Rev. B 87(24), 245203 (2013)
https://doi.org/10.1103/PhysRevB.87.245203
13 A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125(22), 224106 (2006)
https://doi.org/10.1063/1.2404663
14 M. S.Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34(8), 5390 (1986)
https://doi.org/10.1103/PhysRevB.34.5390
15 F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchangecorrelation potential, Phys. Rev. Lett. 102(22), 226401 (2009)
https://doi.org/10.1103/PhysRevLett.102.226401
16 J. Srour, M. Badawi, F. El Haj Hassan, and A. V. Postnikov, Crystal structure and energy bands of (Ga/In)Se and Cu(In,Ga)Se2 semiconductors in comparison, Phys. Status Solidi B Basic Res. 253(8), 1472 (2016)
https://doi.org/10.1002/pssb.201552776
17 Semiconductors: Data Handbook, 3rd Ed., edited by O. Madelung, Berlin: Springer, 2014
18 S. Chen, X. G. Gong, and S. H. Wei, Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2 (X= S and Se) and their alloys, Phys. Rev. B 75(20), 205209 (2007)
https://doi.org/10.1103/PhysRevB.75.205209
19 H. Mirhosseini, H. Kiss, and C. Felser, Behavior of S 3 grain boundaries in CuInSe2 and CuGaSe2 photovoltaic absorbers revealed by first-principles hybrid functional calculations, Phys. Rev. Appl. 4(6), 064005 (2015)
https://doi.org/10.1103/PhysRevApplied.4.064005
20 A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, Special quasirandom structures, Phys. Rev. Lett. 65(3), 353 (1990)
https://doi.org/10.1103/PhysRevLett.65.353
21 S. H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger, Electronic properties of random alloys: Special quasirandom structures, Phys. Rev. B 42(15), 9622 (1990)
https://doi.org/10.1103/PhysRevB.42.9622
22 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
23 D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45, 566 (1980)
https://doi.org/10.1103/PhysRevLett.45.566
24 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
25 T. Maeda and T. Wada, First-principles calculation of defect formation energy in chalcopyrite-type CuInSe2, CuGaSe2 and CuAlSe2, J. Phys. Chem. Solids 66(11), 1924 (2005)
https://doi.org/10.1016/j.jpcs.2005.09.067
26 G. Boyd, H. Kasper, and J. McFee, Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients, IEEE J. Quantum Electron. 7(12), 563 (1971)
https://doi.org/10.1109/JQE.1971.1076588
27 B. Tell and H. M. Kasper, Optical and electrical properties of AgGaS2 and AgGaSe2, Phys. Rev. B 4(12), 4455 (1971)
https://doi.org/10.1103/PhysRevB.4.4455
28 J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
https://doi.org/10.1103/PhysRevB.63.245407
29 Y. B. Hu, Y. H. Zhao, and X. F. Wang, A computational investigation of topological insulator Bi2Se3 film, Front. Phys. 9(6), 760 (2014)
https://doi.org/10.1007/s11467-014-0441-1
30 W. Ji, H. Q. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9(6), 671 (2014)
https://doi.org/10.1007/s11467-014-0458-5
31 S. H. Wei and A. Zunger, Fingerprints of CuPt ordering in III-V semiconductor alloys: Valence-band splittings, band-gap reduction, and X-ray structure factors, Phys. Rev. B 57(15), 8983 (1998)
https://doi.org/10.1103/PhysRevB.57.8983
32 B. Tell and P. M. Bridenbaugh, Aspects of the band structure of CuGaS2 and CuGaSe2, Phys. Rev. B 12(8), 3330 (1975)
https://doi.org/10.1103/PhysRevB.12.3330
[1] Chao Zhang, Fuming Xu, Jian Wang. Full counting statistics of phonon transport in disordered systems[J]. Front. Phys. , 2021, 16(3): 33502-.
[2] Yong-Hao Gao, Xu-Ping Yao, Fei-Ye Li, Gang Chen. Spin-1 pyrochlore antiferromagnets: Theory, model, and materials’ survey[J]. Front. Phys. , 2020, 15(6): 63201-.
[3] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[4] Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105-.
[5] Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄). Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study[J]. Front. Phys. , 2018, 13(2): 137102-.
[6] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[7] Yunhuan Nie,Hua Tong,Jun Liu,Mengjie Zu,Ning Xu. Role of disorder in determining the vibrational properties of mass-spring networks[J]. Front. Phys. , 2017, 12(3): 126301-.
[8] Jun-Ying Huang, Zu-Hui Wu, Ji-Ping Huang. Spectral blueshift as a three-dimensional structure-ordering process[J]. Front. Phys. , 2017, 12(3): 124205-.
[9] Ge Zhang,Bin Liu,Yi-Feng Yang,Shiping Feng. Spatial modulation of unitary impurity-induced resonances in superconducting CeCoIn5[J]. Front. Phys. , 2016, 11(3): 117402-.
[10] Bakhtiar Ul Haq, Rashid Ahmed, Galila Abdellatif, Amiruddin Shaari, Faheem K. Butt, Mohammed Benali Kanoun, Souraya Goumri-Said. Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations[J]. Front. Phys. , 2016, 11(1): 117101-.
[11] Feng-Bin Liu (刘峰斌), Jing-Lin Li (李景林), Wen-Bin Chen (陈文彬), Yan Cui (崔岩), Zhi-Wei Jiao (焦志伟), Hong-Juan Yan (阎红娟), Min Qu (屈敏), Jie-Jian Di (狄杰建). Geometries and electronic structures of the hydrogenated diamond (100) surface upon exposure to active ions: A first principles study[J]. Front. Phys. , 2016, 11(1): 116804-.
[12] Qing-Xiao Zhou, Chao-Yang Wang, Zhi-Bing Fu, Yong-Jian Tang, Hong Zhang. Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study[J]. Front. Phys. , 2014, 9(2): 200-209.
[13] Zhen Chen, Rui-Juan Xiao, Chao Ma, Yuan-Bin Qin, Hong-Long Shi, Zhi-Wei Wang, Yuan-Jun Song, Zhen Wang, Huan-Fang Tian, Huai-Xin Yang, Jian-Qi Li. Electronic structure of YMn2O5 studied by EELS and first-principles calculations[J]. Front. Phys. , 2012, 7(4): 429-434.
[14] Wei-dong Sheng, Marek Korkusinski, Alev Devrim Gü?lü, Michal Zielinski, Pawel Potasz, Eugene S. Kadantsev, Oleksandr Voznyy, Pawel Hawrylak. Electronic and optical properties of semiconductor and graphene quantum dots[J]. Front. Phys. , 2012, 7(3): 328-352.
[15] Dai-xiang Mou, Lin Zhao, Xing-jiang Zhou. Structural, magnetic and electronic properties of the iron–chalcogenide AxFe2-ySe2 (A=K, Cs, Rb, and Tl, etc.) superconductors[J]. Front. Phys. , 2011, 6(4): 410-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed