|
|
Structural, optical, and thermal properties of MAX-phase Cr2AlB2 |
Xiao-Hong Li1,2,3( ), Hong-Ling Cui1, Rui-Zhou Zhang1 |
1. College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China 2. Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China 3. Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Luoyang 471023, China |
|
|
Abstract First-principles calculations of the structural, optical, and thermal properties of Cr2AlB2 are performed using the pseudopotential plane-wave method within the generalized gradient approximation (GGA). Calculation of the elastic constant and phonon dispersion indicates that Cr2AlB2 is mechanically and thermodynamically stable. Analysis of the band structure and density of states indicates that Cr2AlB2 is metallic. The thermal properties under increasing temperature and pressure are investigated using the quasi-harmonic Debye model. The results show that anharmonic effects on Cr2AlB2 are important at low temperature and high pressure. The calculated equilibrium primitive cell volume is 95.91 Å3 at T = 300 K, P = 0 GPa. The ability of Cr2AlB2 to resist volume changes becomes weaker with increasing temperature and stronger with increasing pressure. Analysis of optical properties of Cr2AlB2 shows that the static dielectric function of Cr2AlB2 is 53.1, and the refractive index n0 is 7.3. If the incident light has a frequency exceeding 16.09 eV, which is the plasma frequency of Cr2AlB2, Cr2AlB2 changes from metallic to dielectric material.
|
Keywords
electronic structure
optical properties
first-principles calculations
Cr2AlB2
thermal properties
|
Corresponding Author(s):
Xiao-Hong Li
|
Issue Date: 24 January 2018
|
|
1 |
M. W. Barsoum, The Mn+1AXn phases: A new class of solids, Prog. Solid State Chem. 28(1–4), 201 (2000)
https://doi.org/10.1016/S0079-6786(00)00006-6
|
2 |
P. Eklund, M. Beckers, U. Jansson, H. Hogberg, and L. Hultman, The Mn+1AXnphases: Materials science and thin-film processing, Thin Solid Films 518(8), 1851 (2010)
https://doi.org/10.1016/j.tsf.2009.07.184
|
3 |
W. Jeitschko, Die Kristallstruktur von MoAlB, Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 97, 1472(1966)
|
4 |
W. Jeitschko, The crystal structure of Fe2AlB2, Acta Crystallogr. B 25(1), 163 (1969)
https://doi.org/10.1107/S0567740869001944
|
5 |
H. Y. Chung, M. B. Weinberger, J. B. Levine, A. Kavner, J. M. Yang, S. H. Tolbert, and R. B. Kaner, Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Science 316(5823), 436 (2007)
https://doi.org/10.1126/science.1139322
|
6 |
P. Rogl, in: Inorganic Reactions and Methods, edited by A. Hagen, New York: Wiley, 1991
|
7 |
A. J. Jr Frueh, Confirmation of the structure of chromium boride, CrB, Acta Crystallogr. 4(1), 66 (1951)
https://doi.org/10.1107/S0365110X51000118
|
8 |
Y. B. Kuz’ma, Crystal structure of the compound YCrB4 and its analogs, Sov. Phys. Crystallogr. 15, 312 (1970)
|
9 |
Y. B. Kuz’ma and P. I. Krypyakevich, Crystal structure of Cr3AlB4, Dopovidi Akademii Nauk Ukrains’koi RSR, Seriya A-Fiziko-Tekhnichni ta Matematichni Nauki, 34, 1118 (1972)
|
10 |
M. Ade and H. Hillebrecht, Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The first members of the series (CrB2)nCrAl with n= 1,2, 3 and a unifying concept for ternary borides as MAB-Phases, Inorg. Chem. 54(13), 6122 (2015)
https://doi.org/10.1021/acs.inorgchem.5b00049
|
11 |
P. Pavone, K. Karch, O. Schutt, D. Strauch, W. Windl, P. Giannozzi, and S. Baroni, Ab Initiolattice dynamics of diamond, Phys. Rev. B 48(5), 3156 (1993)
https://doi.org/10.1103/PhysRevB.48.3156
|
12 |
S. Biernacki and M. Scheffler, Negative thermal expansion of diamond and zinc-blende semiconductors, Phys. Rev. Lett. 63(3), 290 (1989)
https://doi.org/10.1103/PhysRevLett.63.290
|
13 |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
|
14 |
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
15 |
P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem. 98(45), 11623 (1994)
https://doi.org/10.1021/j100096a001
|
16 |
L. Pan, T. C. Lu, and R. Su, Study of electronic structure and optical propertise of g-AlON crystal, Acta Physica Sinica 61, 027101 (2012)
|
17 |
K. Huang, Solid-State Physics, Beijing: Higher Education Press, 1998
|
18 |
X. C. Shen, The Spectrum and Optical Property of Semiconductor, Beijing: Science Press, 1992
|
19 |
P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, Universal features of the equation of state of solids, J. Phys.: Condens. Matter 1(11), 1941 (1989)
https://doi.org/10.1088/0953-8984/1/11/002
|
20 |
A. Togo, F. Oba, and I. Tanaka, First-Principles calculations of the ferroelastic transition between rutiletype and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
https://doi.org/10.1103/PhysRevB.78.134106
|
21 |
F. D. Murnaghan, On the theory of the tension of an elastic cylinder, Proc. Natl. Acad. Sci. USA 30(12), 382 (1944)
https://doi.org/10.1073/pnas.30.12.382
|
22 |
M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, First-Principles simulation: Ideas, illustrations and the CASTEP Code, J. Phys.: Condens. Matter 14(11), 2717 (2002)
https://doi.org/10.1088/0953-8984/14/11/301
|
23 |
S. Wang, X. Yu, J. Zhang, Y. Zhang, L. Wang, K. Leinenweber, H. Xu, D. Popov, C. Park, W. Yang, D. He, and Y. Zhao, Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4, J. Superhard Mater. 36(4), 279 (2014)
https://doi.org/10.3103/S1063457614040066
|
24 |
S. K. R. Patil, S. V. Khare, B. R. Tuttle, J. K. Bording, and S. Kodambaka, Mechanical stability of possible structures of PtN investigated using first-principles calculations, Phys. Rev. B 73(10), 104118 (2006)
https://doi.org/10.1103/PhysRevB.73.104118
|
25 |
T. Ma, H. Li, X. Zheng, S. Wang, X. Wang, H. Zhao, S. Han, J. Liu, R. Zhang, P. Zhu, Y. Long, J. Cheng, Y. Ma, Y. Zhao, C. Jin, and X. Yu, Ultrastrong boron frameworks in ZrB12: A highway for electron conducting, Adv. Mater. 29(3), 1604003 (2017)
https://doi.org/10.1002/adma.201604003
|
26 |
S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinbrugh, and Dublin Philosophical Magazine and Journal of Science 45(367), 823 (1954)
https://doi.org/10.1080/14786440808520496
|
27 |
X. Q. Chen, H. Y. Niu, D. Z. Li, and Y. Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19(9), 1275 (2011)
https://doi.org/10.1016/j.intermet.2011.03.026
|
28 |
W. L. Johnson and A. R. Williams, Structure and properties of transition-metal-metalloid glasses based on refractory metals, Phys. Rev. B 20(4), 1640 (1979)
https://doi.org/10.1103/PhysRevB.20.1640
|
29 |
A. P. Thakoor, J. L. Lamb, S. K. Khanna, M. Mehra, and W. L. Johnson, Refractory amorphous metallic (W0.6 Re0.4)76B24 coatings on steel substrates, J. Appl. Phys. 58(9), 3409 (1985)
https://doi.org/10.1063/1.336295
|
30 |
L. Han, S. Wang, J. Zhu, S. Han, W. Li, B. Chen, X. Wang, X. Yu, B. Liu, R. Zhang, Y. Long, J. Cheng, J. Zhang, Y. Zhao, and C. Jin, Hardness, elastic, and electronic properties of chromium monoboride, Appl. Phys. Lett. 106(22), 221902 (2015)
https://doi.org/10.1063/1.4922147
|
31 |
S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)
https://doi.org/10.1103/RevModPhys.73.515
|
32 |
P. Debye, Zur Theorie der spezifischen Wärmen, Ann. Phys. 344(14), 789 (1912)
https://doi.org/10.1002/andp.19123441404
|
33 |
A. T. Petit and P. L. Dulong, Recherches Sur quelques points importans de la theorie de la chaleur, Annales de chimie et de physique 10, 395 (1819)
|
34 |
M. D. Lokman Ali and M. D. Zahidur Rahaman, The Structural, elastic, electronic and optical properties of cubic perovskite SrVO3 compound: An ab initiostudy, International Journal of Materials Science and Applications 5(5), 202 (2016)
https://doi.org/10.11648/j.ijmsa.20160505.14
|
35 |
C. L. Li, H. Wang, B. Wang, and R. Wang, Firstprinciples study of the structure, electronic, and optical properties of orthorhombic BiInO3, Appl. Phys. Lett. 91(7), 071902 (2007)
https://doi.org/10.1063/1.2770761
|
36 |
H. Wang, B. Wang, Q. K. Li, Z. Y. Zhu, R. Wang, and C. H. Woo, First-principles study of the cubic perovskites BiMO3 (M= Al, Ga, In, and Sc), Phys. Rev. B 75(24), 245209 (2007)
https://doi.org/10.1103/PhysRevB.75.245209
|
37 |
M. Q. Cai, Z. Yin, and M. S. Zhang, First-principles study of optical properties of barium titanate, Appl. Phys. Lett. 83(14), 2805 (2003)
https://doi.org/10.1063/1.1616631
|
38 |
M. Xu, S. Y. Wang, G. Yin, J. Li, Y. X. Zheng, L. Y. Chen, and Y. Jia, Optical properties of cubic Ti3N4, Zr3N4 and Hf3N4, Appl. Phys. Lett. 89(15), 151908 (2006)
https://doi.org/10.1063/1.2360937
|
39 |
M. D. Rahman, M. Z. Rahaman, and M. A. Rahman, The structural, elastic, electronic and optical properties of MgCu under pressure: A first-principles study, Int. J. Mod. Phys. B 30(27), 1650199 (2016)
https://doi.org/10.1142/S021797921650199X
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|