Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (4) : 465-471    https://doi.org/10.1007/s11467-014-0428-y
RESEARCH ARTICLE
Electronic and magnetic structures of chain structured iron selenide compounds
Wei Li1,2,Chandan Setty3,X. H. Chen4,Jiangping Hu5,3,*()
1. State Key Laboratory of Functional Materials for Informatics and Shanghai Center for Superconductivity, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2. Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
3. Department of Physics, Purdue University, West Lafayette, IA 47907, USA
4. Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, China
5. Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(548 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electronic and magnetic structures of iron selenide compounds Ce2O2FeSe2 (2212*) and BaFe2Se3 (123*) are studied by the first-principles calculations. We find that while all these compounds are composed of one-dimensional (1D) Fe chain (or ladder) structures, their electronic structures are not close to be quasi-1D. The magnetic exchange couplings between two nearest-neighbor (NN) chains in 2212*and between two NN two-leg-ladders in 123*are both antiferromagnetic (AFM), which is consistent with the presence of significant third NN AFM coupling, a common feature shared in other iron-chalcogenides, FeTe (11*) and KyFe2-xSe2 (122*). In magnetic ground states, each Fe chain of 2212*is ferromagnetic and each two-leg ladder of 123*form a block-AFM structure. We suggest that all magnetic structures in iron-selenide compounds can be unified into an extended J1J2J3 model. Spin-wave excitations of the model are calculated and can be tested by future experiments on these two systems.

Keywords first-principles calculations      magnetism      spin-wave excitations     
Corresponding Author(s): Jiangping Hu   
Issue Date: 26 August 2014
 Cite this article:   
Wei Li,Chandan Setty,X. H. Chen, et al. Electronic and magnetic structures of chain structured iron selenide compounds[J]. Front. Phys. , 2014, 9(4): 465-471.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-014-0428-y
https://academic.hep.com.cn/fop/EN/Y2014/V9/I4/465
1 J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0), Phys. Rev. B, 2010, 82: 180520(R)
doi: 10.1103/PhysRevB.82.180520
2 H. Lei, M. Abeykoon, E. S. Bozin, and C. Petrovic, Spin glass behavior of insulating K0.8Fe2-xS2, Phys. Rev. B, 2011, 83: 180503(R)
doi: 10.1103/PhysRevB.83.180503
3 A. Krzton-Maziopa, Z. Shermadini, E. Pomjakushina, V. Pomjakushin, M. Bendele, A. Amato, R. Khasanov, H. Luetkens, and K. Conder, Synthesis and crystal growth of Cs0.8(FeSe0.98)2: A new iron-based superconductor with Tc = 27 K, J. Phys.: Condens. Matter, 2011, 23(5): 052203
doi: 10.1088/0953-8984/23/5/052203
4 R. H. Liu, X. G. Luo, M. Zhang, A. F. Wang, J. J. Ying, X. F. Wang, Y. J. Yan, Z. J. Xiang, P. Cheng, G. J. Ye, Z. Y. Li, and X. H. Chen, Coexistence of superconductivity and antiferromagnetism in single crystals A0.8Fe2-ySe2 (A=K, Rb, Cs, Tl/K and Tl/Rb): Evidence from magnetization and resistivity, Europhys. Lett., 2011, 94(2): 27008
doi: 10.1209/0295-5075/94/27008
5 M. Fang, H. Wang, C. Dong, Z. Li, C. Feng, J. Chen, and H. Q. Yuan, Fe-based superconductivity with Tc =31 K bordering an antiferromagnetic insulator in (Tl,K) FexSe2, Europhys. Lett., 2011, 94(2): 27009
doi: 10.1209/0295-5075/94/27009
6 Z. G. Chen, R. H. Yuan, T. Dong, G. Xu, Y. G. Shi, P. Zheng, J. L. Luo, J. G. Guo, X. L. Chen, and N. L. Wang, Infrared spectrum and its implications for the electronic structure of the semiconducting iron selenide K0.83Fe1.53Se2, Phys. Rev. B, 2011, 83: 220507(R)
doi: 10.1103/PhysRevB.83.220507
7 W. Bao, Q. Huang, G. F. Chen, M. A. Green, D. M. Wang, J. B. He, X. Q. Wang, and Y. Qiu, A novel large moment antiferromagnetic order in K0.8Fe1.6S2 superconductor, Chin. Phys. Lett., 2011, 28(8): 086104
doi: 10.1088/0256-307X/28/8/086104
8 V. Yu. Pomjakushin, D. V. Sheptyakov, E. V. Pomjakushina, A. Krzton-Maziopa, K. Conder, D. Chernyshov, V. Svitlyk, and Z. Shermadini, Iron-vacancy superstructure and possible room-temperature antiferromagnetic order in superconducting CsyFe2-xSe2, Phys. Rev. B, 2011, 83(14): 144410
doi: 10.1103/PhysRevB.83.144410
9 Z. Wang, Y. J. Song, H. L. Shi, Z. W. Wang, Z. Chen, H. F. Tian, G. F. Chen, J. G. Guo, H. X. Yang, and J. Q. Li, Microstructure and ordering of iron vacancies in the superconductor system KyFexSe2 as seen via transmission electron microscopy, Phys. Rev. B, 2011, 83: 140505(R)
doi: 10.1103/PhysRevB.83.140505
10 P. Zavalij, W. Bao, X. F. Wang, J. J. Ying, X. H. Chen, D. M. Wang, J. B. He, X. Q. Wang, G. F. Chen, P. Y. Hsieh, Q. Huang, and M. A. Green, Structure of vacancy-ordered single-crystalline superconducting potassium iron selenide, Phys. Rev. B, 2011, 83(13): 132509
doi: 10.1103/PhysRevB.83.132509
11 X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Ternary iron selenide K0.8Fe1.6Se2 is an antiferromagnetic semiconductor, Phys. Rev. B, 2011, 83(23): 233205
doi: 10.1103/PhysRevB.83.233205
12 C. Cao and J. Dai, Block spin ground state and threedimensionality of (K,Tl)yFe1.6Se2, Phys. Rev. Lett., 2011, 107(5): 056401
doi: 10.1103/PhysRevLett.107.056401
13 I. A. Nebrasov and M. V. Sadovskii, Electronic structure, topological phase transitions and superconductivity in (K,Cs)xFe2Se2, JETP Lett., 2011, 93(3): 166
doi: 10.1134/S002136401103012X
14 I. R. Shein and A. L. Ivanovskii, Electronic structure and Fermi surface of new K intercalated iron selenide superconductor KxFe2Se2, arXiv: 1012.5164, 2010
15 X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Electronic and magnetic structures of the ternary iron selenides AFe2Se2 (A=Cs, Rb, K, or Tl), Phys. Rev. B, 2011, 84(5): 054502 16.
16 C. Cao and J. Dai, Electronic structure of KFe2Se2 from first-principles calculations, Chin. Phys. Lett., 2011, 28(5): 057402
doi: 10.1088/0256-307X/28/5/057402
17 Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater., 2011, 10(4): 273
doi: 10.1038/nmat2981
18 T. Qian, X. P. Wang, W. C. Jin, P. Zhang, P. Richard, G. Xu, X. Dai, Z. Fang, J. G. Guo, X. L. Chen, and H. Ding, Absence of a holelike Fermi surface for the iron-based K0.8Fe1.7Se2 superconductor revealed by angleresolved photoemission spectroscopy, Phys. Rev. Lett., 2011, 106(18): 187001
doi: 10.1103/PhysRevLett.106.187001
19 E. E. McCabe, D. G. Free, and J. S. O. Evans, A new iron oxyselenide Ce2O2FeSe2: Synthesis and characterisation, Chem. Commun., 2011, 47(4): 1261
doi: 10.1039/c0cc03477k
20 A. Krzton-Maziopa, E. Pomjakushina, V. Pomjakushin, D. Sheptyakov, D. Chernyshov, V. Svitlyk, and K. Conder, The synthesis, and crystal and magnetic structure of the iron selenide BaFe2Se3 with possible superconductivity at Tc = 11 K, J. Phys.: Condens. Matter, 2011, 23(40): 402201
doi: 10.1088/0953-8984/23/40/402201
21 J. M. Caron, J. R. Neilson, D. C. Miller, A. Llobet, and T. M. McQueen, Iron displacements and magnetoelastic coupling in the antiferromagnetic spin-ladder compound BaFe2Se3, Phys. Rev. B, 2011, 84: 180409(R)
doi: 10.1103/PhysRevB.84.180409
22 B. Saparov, S. Calder, B. Sipos, H. Cao, S. Chi, D. J. Singh, A. D. Christianson, M. D. Lumsden, and A. S. Sefat, Spin glass and semiconducting behavior in one-dimensional BaFe2-δSe3 (δ≈ 0.2) crystals, Phys. Rev. B, 2011, 84(24): 245132
doi: 10.1103/PhysRevB.84.245132
23 J. M. Caron, J. R. Neilson, D. C. Miller, K. Arpino, A. Llobet, T. M. McQueen, Orbital-selective magnetism in the spin-ladder iron selenides Ba1-xKxFe2Se3, Phys. Rev. B, 2012, 85: 180405(R)
doi: 10.1103/PhysRevB.85.180405
24 M. A. III McCarron, J. C. Subramanian, J. C. Calabrese, and R. L. Harlow, The incommensurate structure of (Sr14-xCax)Cu24O41 (0<x~ 8) a superconductor byproduct, Mater. Res. Bull., 1988, 23(9): 1355
doi: 10.1016/0025-5408(88)90124-9
25 T. Siegrist, L. F. Schneemeyer, S. A. Sunshine, J. V. Waszczak, and R. S. Roth, A new layered cuprate structure-type, (A1-xA'x)14Cu24O41, Mater. Res. Bull., 1988, 23(10): 1429
doi: 10.1016/0025-5408(88)90268-1
26 T. Nakano, K. Kuroki, and S. Onari, Fluctuation exchange study on the double chain superconductor, Physica B, 2008, 403(5-9): 1159
27 W. Li, S. Dong, C. Fang, and J. Hu, Block antiferromagnetism and checkerboard charge ordering in the alkalidoped iron selenides R1-xFe2-ySe, Phys. Rev. B, 2012, 85: 100407(R)
doi: 10.1103/PhysRevB.85.100407
28 P. E. Bl?chl, Projector augmented-wave method, Phys. Rev. B, 1994, 50(24): 17953
doi: 10.1103/PhysRevB.50.17953
29 G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54(16): 11169
doi: 10.1103/PhysRevB.54.11169
30 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77(18): 3865
doi: 10.1103/PhysRevLett.77.3865
31 L. Pourovskii, V. Vildosola, S. Biermann, and A. Georges, Local moment vs. Kondo behavior of the 4f-electrons in rareearth iron oxypnictides, Europhys. Lett., 2008, 84(3): 37006
doi: 10.1209/0295-5075/84/37006
32 J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Scientific Reports, 2012, 2: 381
doi: 10.1038/srep00381
33 J. P. Hu, B. Xu, W. Liu, N. Hao, and Y. P. Wang, Unified minimum effective model of magnetic properties of ironbased superconductors, Phys. Rev. B, 2012, 85(14): 144403
doi: 10.1103/PhysRevB.85.144403
34 O. J. Lipscombe, G. F. Chen, C. Fang, T. G. Perring, D. L. Abernathy, A. D. Christianson, T. Egami, N. Wang, J. Hu, and P. Dai, Spin waves in the (π,0) magnetically ordered iron chalcogenide Fe1.05Te, Phys. Rev. Lett., 2011, 106(5): 057004
doi: 10.1103/PhysRevLett.106.057004
35 M. Wang, C. Fang, D. X. Yao, G. Tan, L. W. Harriger, Y. Song, T. Netherton, C. Zhang, M. Wang, M. B. Stone, W. Tian, J. Hu, and P. Dai, Spin waves and magnetic exchange interactions in insulating Rb0.89Fe1.58Se2, Nat. Commun., 2011, 2: 580
doi: 10.1038/ncomms1573
[1] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[2] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[3] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
[4] Wen-Cheng Huang, Wei Li, Xiaosong Liu. Exotic ferromagnetism in the two-dimensional quantum material C3N[J]. Front. Phys. , 2018, 13(2): 137104-.
[5] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[6] Kun Peng Dou (豆坤鵬),Chao-Cheng Kaun (關肇正). Conductance switching of a phthalocyanine molecule on an insulating surface[J]. Front. Phys. , 2017, 12(4): 127303-.
[7] Thomas Pope,Werner Hofer. Spin in the extended electron model[J]. Front. Phys. , 2017, 12(3): 128503-.
[8] Ming Yang, Xiao-Long Zhang, Wu-Ming Liu. Tunable topological quantum states in three- and two-dimensional materials[J]. Front. Phys. , 2015, 10(2): 108102-.
[9] Chun-Gang Duan (段纯刚). Interface/surface magnetoelectric effects: New routes to the electric field control of magnetism[J]. Front. Phys. , 2012, 7(4): 375-379.
[10] Wei-dong Sheng, Marek Korkusinski, Alev Devrim Gü?lü, Michal Zielinski, Pawel Potasz, Eugene S. Kadantsev, Oleksandr Voznyy, Pawel Hawrylak. Electronic and optical properties of semiconductor and graphene quantum dots[J]. Front. Phys. , 2012, 7(3): 328-352.
[11] Shiliang Li, Pengcheng Dai. Superconductivity and spin fluctuations[J]. Front. Phys. , 2011, 6(4): 429-439.
[12] Aron J. Beekman, Jan Zaanen. Electrodynamics of Abrikosov vortices: the field theoretical formulation[J]. Front. Phys. , 2011, 6(4): 357-369.
[13] Zhi-wei ZHANG (张志伟), Jian-chen LI (李建忱), Qing JIANG (蒋青). Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review[J]. Front. Phys. , 2011, 6(2): 162-176.
[14] Nai-feng SHEN (沈乃丰), Yan-biao WANG (王彦彪), Sheng CHEN (陈昇), Jin-lan WANG (王金兰). Structural and magnetic properties of bimetallic Con-1Cr clusters with density functional theory[J]. Front Phys Chin, 2009, 4(3): 408-414.
[15] Qiang FU (付强), Lan-feng YUAN (袁岚峰), Yi LUO (罗毅), Jin-long YANG (杨金龙). Exploring at nanoscale from first principles[J]. Front Phys Chin, 2009, 4(3): 256-268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed