|
|
Electronic and magnetic structures of chain structured iron selenide compounds |
Wei Li1,2,Chandan Setty3,X. H. Chen4,Jiangping Hu5,3,*( ) |
1. State Key Laboratory of Functional Materials for Informatics and Shanghai Center for Superconductivity, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2. Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
3. Department of Physics, Purdue University, West Lafayette, IA 47907, USA
4. Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, China
5. Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Electronic and magnetic structures of iron selenide compounds Ce2O2FeSe2 (2212*) and BaFe2Se3 (123*) are studied by the first-principles calculations. We find that while all these compounds are composed of one-dimensional (1D) Fe chain (or ladder) structures, their electronic structures are not close to be quasi-1D. The magnetic exchange couplings between two nearest-neighbor (NN) chains in 2212*and between two NN two-leg-ladders in 123*are both antiferromagnetic (AFM), which is consistent with the presence of significant third NN AFM coupling, a common feature shared in other iron-chalcogenides, FeTe (11*) and KyFe2-xSe2 (122*). In magnetic ground states, each Fe chain of 2212*is ferromagnetic and each two-leg ladder of 123*form a block-AFM structure. We suggest that all magnetic structures in iron-selenide compounds can be unified into an extended J1–J2–J3 model. Spin-wave excitations of the model are calculated and can be tested by future experiments on these two systems.
|
Keywords
first-principles calculations
magnetism
spin-wave excitations
|
Corresponding Author(s):
Jiangping Hu
|
Issue Date: 26 August 2014
|
|
1 |
J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0), Phys. Rev. B, 2010, 82: 180520(R) doi: 10.1103/PhysRevB.82.180520
|
2 |
H. Lei, M. Abeykoon, E. S. Bozin, and C. Petrovic, Spin glass behavior of insulating K0.8Fe2-xS2, Phys. Rev. B, 2011, 83: 180503(R) doi: 10.1103/PhysRevB.83.180503
|
3 |
A. Krzton-Maziopa, Z. Shermadini, E. Pomjakushina, V. Pomjakushin, M. Bendele, A. Amato, R. Khasanov, H. Luetkens, and K. Conder, Synthesis and crystal growth of Cs0.8(FeSe0.98)2: A new iron-based superconductor with Tc = 27 K, J. Phys.: Condens. Matter, 2011, 23(5): 052203 doi: 10.1088/0953-8984/23/5/052203
|
4 |
R. H. Liu, X. G. Luo, M. Zhang, A. F. Wang, J. J. Ying, X. F. Wang, Y. J. Yan, Z. J. Xiang, P. Cheng, G. J. Ye, Z. Y. Li, and X. H. Chen, Coexistence of superconductivity and antiferromagnetism in single crystals A0.8Fe2-ySe2 (A=K, Rb, Cs, Tl/K and Tl/Rb): Evidence from magnetization and resistivity, Europhys. Lett., 2011, 94(2): 27008 doi: 10.1209/0295-5075/94/27008
|
5 |
M. Fang, H. Wang, C. Dong, Z. Li, C. Feng, J. Chen, and H. Q. Yuan, Fe-based superconductivity with Tc =31 K bordering an antiferromagnetic insulator in (Tl,K) FexSe2, Europhys. Lett., 2011, 94(2): 27009 doi: 10.1209/0295-5075/94/27009
|
6 |
Z. G. Chen, R. H. Yuan, T. Dong, G. Xu, Y. G. Shi, P. Zheng, J. L. Luo, J. G. Guo, X. L. Chen, and N. L. Wang, Infrared spectrum and its implications for the electronic structure of the semiconducting iron selenide K0.83Fe1.53Se2, Phys. Rev. B, 2011, 83: 220507(R) doi: 10.1103/PhysRevB.83.220507
|
7 |
W. Bao, Q. Huang, G. F. Chen, M. A. Green, D. M. Wang, J. B. He, X. Q. Wang, and Y. Qiu, A novel large moment antiferromagnetic order in K0.8Fe1.6S2 superconductor, Chin. Phys. Lett., 2011, 28(8): 086104 doi: 10.1088/0256-307X/28/8/086104
|
8 |
V. Yu. Pomjakushin, D. V. Sheptyakov, E. V. Pomjakushina, A. Krzton-Maziopa, K. Conder, D. Chernyshov, V. Svitlyk, and Z. Shermadini, Iron-vacancy superstructure and possible room-temperature antiferromagnetic order in superconducting CsyFe2-xSe2, Phys. Rev. B, 2011, 83(14): 144410 doi: 10.1103/PhysRevB.83.144410
|
9 |
Z. Wang, Y. J. Song, H. L. Shi, Z. W. Wang, Z. Chen, H. F. Tian, G. F. Chen, J. G. Guo, H. X. Yang, and J. Q. Li, Microstructure and ordering of iron vacancies in the superconductor system KyFexSe2 as seen via transmission electron microscopy, Phys. Rev. B, 2011, 83: 140505(R) doi: 10.1103/PhysRevB.83.140505
|
10 |
P. Zavalij, W. Bao, X. F. Wang, J. J. Ying, X. H. Chen, D. M. Wang, J. B. He, X. Q. Wang, G. F. Chen, P. Y. Hsieh, Q. Huang, and M. A. Green, Structure of vacancy-ordered single-crystalline superconducting potassium iron selenide, Phys. Rev. B, 2011, 83(13): 132509 doi: 10.1103/PhysRevB.83.132509
|
11 |
X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Ternary iron selenide K0.8Fe1.6Se2 is an antiferromagnetic semiconductor, Phys. Rev. B, 2011, 83(23): 233205 doi: 10.1103/PhysRevB.83.233205
|
12 |
C. Cao and J. Dai, Block spin ground state and threedimensionality of (K,Tl)yFe1.6Se2, Phys. Rev. Lett., 2011, 107(5): 056401 doi: 10.1103/PhysRevLett.107.056401
|
13 |
I. A. Nebrasov and M. V. Sadovskii, Electronic structure, topological phase transitions and superconductivity in (K,Cs)xFe2Se2, JETP Lett., 2011, 93(3): 166 doi: 10.1134/S002136401103012X
|
14 |
I. R. Shein and A. L. Ivanovskii, Electronic structure and Fermi surface of new K intercalated iron selenide superconductor KxFe2Se2, arXiv: 1012.5164, 2010
|
15 |
X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Electronic and magnetic structures of the ternary iron selenides AFe2Se2 (A=Cs, Rb, K, or Tl), Phys. Rev. B, 2011, 84(5): 054502 16.
|
16 |
C. Cao and J. Dai, Electronic structure of KFe2Se2 from first-principles calculations, Chin. Phys. Lett., 2011, 28(5): 057402 doi: 10.1088/0256-307X/28/5/057402
|
17 |
Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater., 2011, 10(4): 273 doi: 10.1038/nmat2981
|
18 |
T. Qian, X. P. Wang, W. C. Jin, P. Zhang, P. Richard, G. Xu, X. Dai, Z. Fang, J. G. Guo, X. L. Chen, and H. Ding, Absence of a holelike Fermi surface for the iron-based K0.8Fe1.7Se2 superconductor revealed by angleresolved photoemission spectroscopy, Phys. Rev. Lett., 2011, 106(18): 187001 doi: 10.1103/PhysRevLett.106.187001
|
19 |
E. E. McCabe, D. G. Free, and J. S. O. Evans, A new iron oxyselenide Ce2O2FeSe2: Synthesis and characterisation, Chem. Commun., 2011, 47(4): 1261 doi: 10.1039/c0cc03477k
|
20 |
A. Krzton-Maziopa, E. Pomjakushina, V. Pomjakushin, D. Sheptyakov, D. Chernyshov, V. Svitlyk, and K. Conder, The synthesis, and crystal and magnetic structure of the iron selenide BaFe2Se3 with possible superconductivity at Tc = 11 K, J. Phys.: Condens. Matter, 2011, 23(40): 402201 doi: 10.1088/0953-8984/23/40/402201
|
21 |
J. M. Caron, J. R. Neilson, D. C. Miller, A. Llobet, and T. M. McQueen, Iron displacements and magnetoelastic coupling in the antiferromagnetic spin-ladder compound BaFe2Se3, Phys. Rev. B, 2011, 84: 180409(R) doi: 10.1103/PhysRevB.84.180409
|
22 |
B. Saparov, S. Calder, B. Sipos, H. Cao, S. Chi, D. J. Singh, A. D. Christianson, M. D. Lumsden, and A. S. Sefat, Spin glass and semiconducting behavior in one-dimensional BaFe2-δSe3 (δ≈ 0.2) crystals, Phys. Rev. B, 2011, 84(24): 245132 doi: 10.1103/PhysRevB.84.245132
|
23 |
J. M. Caron, J. R. Neilson, D. C. Miller, K. Arpino, A. Llobet, T. M. McQueen, Orbital-selective magnetism in the spin-ladder iron selenides Ba1-xKxFe2Se3, Phys. Rev. B, 2012, 85: 180405(R) doi: 10.1103/PhysRevB.85.180405
|
24 |
M. A. III McCarron, J. C. Subramanian, J. C. Calabrese, and R. L. Harlow, The incommensurate structure of (Sr14-xCax)Cu24O41 (0<x~ 8) a superconductor byproduct, Mater. Res. Bull., 1988, 23(9): 1355 doi: 10.1016/0025-5408(88)90124-9
|
25 |
T. Siegrist, L. F. Schneemeyer, S. A. Sunshine, J. V. Waszczak, and R. S. Roth, A new layered cuprate structure-type, (A1-xA'x)14Cu24O41, Mater. Res. Bull., 1988, 23(10): 1429 doi: 10.1016/0025-5408(88)90268-1
|
26 |
T. Nakano, K. Kuroki, and S. Onari, Fluctuation exchange study on the double chain superconductor, Physica B, 2008, 403(5-9): 1159
|
27 |
W. Li, S. Dong, C. Fang, and J. Hu, Block antiferromagnetism and checkerboard charge ordering in the alkalidoped iron selenides R1-xFe2-ySe, Phys. Rev. B, 2012, 85: 100407(R) doi: 10.1103/PhysRevB.85.100407
|
28 |
P. E. Bl?chl, Projector augmented-wave method, Phys. Rev. B, 1994, 50(24): 17953 doi: 10.1103/PhysRevB.50.17953
|
29 |
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54(16): 11169 doi: 10.1103/PhysRevB.54.11169
|
30 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77(18): 3865 doi: 10.1103/PhysRevLett.77.3865
|
31 |
L. Pourovskii, V. Vildosola, S. Biermann, and A. Georges, Local moment vs. Kondo behavior of the 4f-electrons in rareearth iron oxypnictides, Europhys. Lett., 2008, 84(3): 37006 doi: 10.1209/0295-5075/84/37006
|
32 |
J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Scientific Reports, 2012, 2: 381 doi: 10.1038/srep00381
|
33 |
J. P. Hu, B. Xu, W. Liu, N. Hao, and Y. P. Wang, Unified minimum effective model of magnetic properties of ironbased superconductors, Phys. Rev. B, 2012, 85(14): 144403 doi: 10.1103/PhysRevB.85.144403
|
34 |
O. J. Lipscombe, G. F. Chen, C. Fang, T. G. Perring, D. L. Abernathy, A. D. Christianson, T. Egami, N. Wang, J. Hu, and P. Dai, Spin waves in the (π,0) magnetically ordered iron chalcogenide Fe1.05Te, Phys. Rev. Lett., 2011, 106(5): 057004 doi: 10.1103/PhysRevLett.106.057004
|
35 |
M. Wang, C. Fang, D. X. Yao, G. Tan, L. W. Harriger, Y. Song, T. Netherton, C. Zhang, M. Wang, M. B. Stone, W. Tian, J. Hu, and P. Dai, Spin waves and magnetic exchange interactions in insulating Rb0.89Fe1.58Se2, Nat. Commun., 2011, 2: 580 doi: 10.1038/ncomms1573
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|