|
|
Exotic ferromagnetism in the two-dimensional quantum material C3N |
Wen-Cheng Huang1,2, Wei Li3( ), Xiaosong Liu1,2,4( ) |
1. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 2. CAS Center for Excellence in Superconducting Electronics, Shanghai 200050, China 3. Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China 4. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China |
|
|
Abstract The search for and study of exotic quantum states in novel low-dimensional quantum materials have triggered extensive research in recent years. Here, we systematically study the electronic and magnetic structures in the newly discovered two-dimensional quantum material C3N within the framework of density functional theory. The calculations demonstrate that C3N is an indirect-band semiconductor with an energy gap of 0.38 eV, which is in good agreement with experimental observations. Interestingly, we find van Hove singularities located at energies near the Fermi level, which is half that of graphene. Thus, the Fermi energy easily approaches that of the singularities, driving the system to ferromagnetism, under charge carrier injection, such as electric field gating or hydrogen doping. These findings not only demonstrate that the emergence of magnetism stems from the itinerant electron mechanism rather than the effects of local magnetic impurities, but also open a new avenue to designing field-effect transistor devices for possible realization of an insulator–ferromagnet transition by tuning an external electric field.
|
Keywords
quantum material
ferromagnetism
|
Corresponding Author(s):
Wei Li,Xiaosong Liu
|
Issue Date: 24 January 2018
|
|
1 |
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
https://doi.org/10.1103/PhysRevLett.45.494
|
2 |
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Twodimensional magneto transport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)
https://doi.org/10.1103/PhysRevLett.48.1559
|
3 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
|
4 |
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Photoluminescence from chemically exfoliated MoS2, Nano Lett. 11(12), 5111 (2011)
https://doi.org/10.1021/nl201874w
|
5 |
J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, High mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5, 4475 (2014)
https://doi.org/10.1038/ncomms5475
|
6 |
F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)
https://doi.org/10.1038/nmat4384
|
7 |
K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, A role for graphene in silicon-based semiconductor devices, Nature 479(7373), 338 (2011)
https://doi.org/10.1038/nature10680
|
8 |
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
https://doi.org/10.1038/nnano.2010.89
|
9 |
I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zero-bandgap, topgated graphene field-effect transistors, Nat. Nanotechnol. 3(11), 654 (2008)
https://doi.org/10.1038/nnano.2008.268
|
10 |
Y. Feng, X. Yao, M. Wang, Z. Hu, X. Luo, H. T. Wang, and L. Zhang, The atomic structures of carbon nitride sheets for cathode oxygen reduction catalysis, J. Chem. Phys. 138(16), 164706 (2013)
https://doi.org/10.1063/1.4802188
|
11 |
H. J. Xiang, B. Huang, Z. Y. Li, S. H. Wei, J. L. Yang, and X. G. Gong, Ordered semiconducting nitrogengraphene alloys, Phys. Rev. X 2(1), 011003 (2012)
https://doi.org/10.1103/PhysRevX.2.011003
|
12 |
J. Mahmooda, E. K. Leea, M. Jungc, D. Shind, H. J. Choia, J. M. Seoa, S. M. Junga, D. Kimd, F. Lia, M. S. Lahd, N. Parkd, H. J. Shinc, J. H. Ohb, and J. B. Baek, Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state, Proc. Natl. Acad. Sci. USA 113, 7417 (2016)
https://doi.org/10.1073/pnas.1605318113
|
13 |
S. Yang, W. Li, C. Ye, G. Wang, H. Tian, C. Zhu, P. He, G. Ding, X. Xie, Y. Liu, Y. Lifshitz, S. T. Lee, Z. Kang, and M. Jiang, C3N-A2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties, Adv. Mater. 29(16), 1605625 (2017)
https://doi.org/10.1002/adma.201605625
|
14 |
P. Fazekas, Lecture Notes on Electron Correlation and Magnetism, World Scientific, 1999
https://doi.org/10.1142/2945
|
15 |
M. A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96(1), 99 (1954)
https://doi.org/10.1103/PhysRev.96.99
|
16 |
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
17 |
A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
https://doi.org/10.1016/j.scriptamat.2015.07.021
|
18 |
J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45(23), 13244 (1992)
https://doi.org/10.1103/PhysRevB.45.13244
|
19 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
20 |
F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71(11), 809 (1947)
https://doi.org/10.1103/PhysRev.71.809
|
21 |
See Supplemental Material in detail.
|
22 |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
|
23 |
W. Li, J. X. Zhu, Y. Chen, and C. S. Ting, Firstprinciples calculations of the electronic structure of iron-pnictide EuFe2(As, P)2 superconductors: Evidence for antiferromagnetic spin order, Phys. Rev. B 86(15), 155119 (2012)
https://doi.org/10.1103/PhysRevB.86.155119
|
24 |
N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56(20), 12847 (1997)
https://doi.org/10.1103/PhysRevB.56.12847
|
25 |
A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Wannier90: A tool for obtaining maximally-localised Wannier functions, Comput. Phys. Commun. 178(9), 685 (2008)
https://doi.org/10.1016/j.cpc.2007.11.016
|
26 |
X. G. Xu and W. Li, Electronic and magnetic structures of ternary iron telluride KFe2Te2, Front. Phys. 10(4), 107403 (2015)
https://doi.org/10.1007/s11467-015-0495-8
|
27 |
K. Hu, B. Gao, Q. Ji, Y. Ma, W. Li, X. Xu, H. Zhang, G. Mu, F. Huang, C. Cai, X. Xie, and M. Jiang, Effects of electron correlation, electron-phonon coupling, and spin-orbit coupling on the isovalent Pd-substituted superconductor SrPt3P, Phys. Rev. B 93(21), 214510 (2016)
https://doi.org/10.1103/PhysRevB.93.214510
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|