Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (1) : 13305    https://doi.org/10.1007/s11467-020-0997-x
TOPICAL REVIEW
Nonideal double-slope effect in organic field-effect transistors
Ming-Chao Xiao1,2, Jie Liu2, Yuan-Yuan Hu3(), Shuai Wang1(), Lang Jiang2()
1. Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
3. Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
 Download: PDF(4566 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the development of device engineering and molecular design, organic field effect transistors (OFETs) with high mobility over 10 cm2·V−1·s−1 have been reported. However, the nonideal doubleslope effect has been frequently observed in some of these OFETs, which makes it difficult to extract the intrinsic mobility OFETs accurately, impeding the further application of them. In this review, the origin of the nonideal double-slope effect has been discussed thoroughly, with affecting factors such as contact resistance, charge trapping, disorder effects and coulombic interactions considered. According to these discussions and the understanding of the mechanism behind double-slope effect, several strategies have been proposed to realize ideal OFETs, such as doping, molecular engineering, charge trapping reduction, and contact engineering. After that, some novel devices based on the nonideal double-slope behaviors have been also introduced.

Keywords organic field effect transistors      nonideal double-slope effect      mobility     
Corresponding Author(s): Yuan-Yuan Hu,Shuai Wang,Lang Jiang   
Just Accepted Date: 08 September 2020   Issue Date: 27 October 2020
 Cite this article:   
Ming-Chao Xiao,Jie Liu,Yuan-Yuan Hu, et al. Nonideal double-slope effect in organic field-effect transistors[J]. Front. Phys. , 2021, 16(1): 13305.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0997-x
https://academic.hep.com.cn/fop/EN/Y2021/V16/I1/13305
1 H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Ultralow-power organic complementary circuits, Nature 445(7129), 745 (2007)
https://doi.org/10.1038/nature05533
2 G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, Organic transistors in optical displays and microelectronic applications, Adv. Mater. 22(34), 3778 (2010)
https://doi.org/10.1002/adma.200903559
3 C. Zhang, P. Chen, and W. Hu, Organic field-effect transistor-based gas sensors, Chem. Soc. Rev. 44(8), 2087 (2015)
https://doi.org/10.1039/C4CS00326H
4 J. Y. Oh, S. Rondeau-Gagne, Y. C. Chiu, A. Chortos, F. Lissel, G. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W. G. Bae, Y. Kim, L. Jin, J. W. Chung, J. B. Tok, and Z. Bao, Intrinsically stretchable and healable semiconducting polymer for organic transistors, Nature 539(7629), 411 (2016)
https://doi.org/10.1038/nature20102
5 Y. Zang, D. Huang, C. A. Di, and D. Zhu, Device engineered organic transistors for flexible sensing applications, Adv. Mater. 28(22), 4549 (2016)
https://doi.org/10.1002/adma.201505034
6 H. I. Un, P. Cheng, T. Lei, C. Y. Yang, J. Y. Wang, and J. Pei, Charge-trapping-induced non-ideal behaviors in organic field-effect transistors, Adv. Mater. 30(18), 1800017 (2018)
https://doi.org/10.1002/adma.201800017
7 R. Warren, A. Privitera, P. Kaienburg, A. E. Lauritzen, O. Thimm, J. Nelson, and M. K. Riede, Controlling energy levels and Fermi level en route to fully tailored energetics in organic semiconductors, Nat. Commun. 10(1), 5538 (2019)
https://doi.org/10.1038/s41467-019-13563-x
8 J. Ko, Y. Kim, J. S. Kang, R. Berger, H. Yoon, and K. Char, Enhanced vertical charge transport of homo- and blended semiconducting polymers by nanoconfinement, Adv. Mater. 32(10), 1908087 (2020)
https://doi.org/10.1002/adma.201908087
9 G. Schweicher, G. Garbay, R. Jouclas, F. Vibert, F. Devaux, and Y. H. Geerts, Molecular semiconductors for logic operations: Dead-end or bright future? Adv. Mater. 32(10), 1905909 (2020)
https://doi.org/10.1002/adma.201905909
10 X. Wang, R. Kerr, F. Chen, N. Goujon, J. M. Pringle, D. Mecerreyes, M. Forsyth, and P. C. Howlett, Toward high-energy-density lithium metal batteries: Opportunities and challenges for solid organic electrolytes, Adv. Mater. 32(18), 1905219 (2020)
https://doi.org/10.1002/adma.201905219
11 H. Fukagawa, M. Hasegawa, K. Morii, K. Suzuki, T. Sasaki, and T. Shimizu, Universal strategy for efficient electron injection into organic semiconductors utilizing hydrogen bonds, Adv. Mater. 31(43), 1904201 (2019)
https://doi.org/10.1002/adma.201904201
12 Y. Li, C. Ji, Y. Qu, X. Huang, S. Hou, C. Z. Li, L. S. Liao, L. J. Cuo, and S. R. Forrest, Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture, Adv. Mater. 31(40), 1903173 (2019)
https://doi.org/10.1002/adma.201903173
13 J. Mun, J. Kang, Y. Zheng, S. Luo, H. C. Wu, N. Matsuhisa, J. Xu, G. N. Wang, Y. Yun, G. Xue, J. B. H. Tok, and Z. Bao, Conjugated carbon cyclic nanorings as additives for intrinsically stretchable semiconducting polymers, Adv. Mater. 31(42), 1903912 (2019)
https://doi.org/10.1002/adma.201903912
14 Y. Yamashita, J. Tsurumi, M. Ohno, R. Fujimoto, S. Kumagai, T. Kurosawa, T. Okamoto, J. Takeya, and S. Watanabe, Efficient molecular doping of polymeric semiconductors driven by anion exchange, Nature 572(7771), 634 (2019)
https://doi.org/10.1038/s41586-019-1504-9
15 J. Xu, S. Wang, G. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. R. Feig, J. W. To, S. Rondeau-Gagne, J. Park, B. C. Schroeder, C. Lu, J. Y. Oh, Y. Wang, Y. H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J. B. Tok, J. W. Chung, and Z. Bao, Highly stretchable polymer semiconductor films through the nanoconfinement effect, Science 355(6320), 59 (2017)
https://doi.org/10.1126/science.aah4496
16 P. Chao, H. Chen, Y. Zhu, H. Lai, D. Mo, N. Zheng, X. Chang, H. Meng, F. He, and A. Benzo, [1,2-b:4,5- c]dithiophene-4,8-dione-based polymer donor achieving an efficiency over 16%, Adv. Mater. 32(10), 1907059 (2020)
https://doi.org/10.1002/adma.201907059
17 Y. Gao, Y. Yi, X. Wang, H. Meng, D. Lei, X. F. Yu, P. K. Chu, and J. Li, A novel hybrid-layered organic phototransistor enables efficient intermolecular charge transfer and carrier transport for ultrasensitive photodetection, Adv. Mater. 31(16), 1900763 (2019)
https://doi.org/10.1002/adma.201900763
18 J. Wang, H. Yu, T. Fu, C. Zhao, H. Yu, Z. Liu, Q. He, D. Zhang, H. Meng, and W. Huang, Wide band gap pyromellitic diimides for photo stable n-channel thin film transistors, J. Mater. Chem. C 8(22), 7344 (2020)
https://doi.org/10.1039/D0TC00862A
19 X. Ren, F. Yang, X. Gao, S. Cheng, X. Zhang, H. Dong, and W. Hu, Organic field-effect transistor for energyrelated applications: Low-power-consumption devices, near-infrared phototransistors, and organic thermoelectric devices, Adv. Energy Mater. 8(24), 1801003 (2018)
https://doi.org/10.1002/aenm.201801003
20 T. N. Jackson, Y.-Y. Lin, D. J. Gundlach, and H. Klauk, Organic thin-film transistors for organic light-emitting flat-panel display backplanes, IEEE J. Sel. Top. Quantum Electron. 4(1), 100 (1998)
https://doi.org/10.1109/2944.669475
21 P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, Pentacene-based radio-frequency identification circuitry, Appl. Phys. Lett. 82(22), 3964 (2003)
https://doi.org/10.1063/1.1579554
22 Y. Yao, H. Dong, and W. Hu, Charge transport in organic and polymeric semiconductors for flexible and stretchable devices, Adv. Mater. 28(22), 4513 (2016)
https://doi.org/10.1002/adma.201503007
23 H. Li, Y. Shi, G. Han, J. Liu, J. Zhang, C. Li, J. Liu, Y. Yi, T. Li, X. Gao, C. Di, J. Huang, Y. Che, D. Wang, W. Hu, Y. Liu, and L. Jiang, Monolayer two-dimensional molecular crystals for an ultrasensitive OFET-based chemical sensor, Angew. Chem. Int. Ed. 59(11), 4380 (2020)
https://doi.org/10.1002/anie.201916397
24 I. Yagi, N. Hirai, Y. Miyamoto, M. Noda, A. Imaoka, N. Yoneya, K. Nomoto, J. Kasahara, A. Yumoto, and T. Urabe, A flexible full-color AMOLED display driven by OTFTs, J. Soc. Inf. Disp. 16(1), 15 (2008)
https://doi.org/10.1889/1.2835023
25 C. Reese, and Z. Bao, Detailed characterization of contact resistance, gate-bias-dependent field-effect mobility, and short-channel effects with microscale elastomeric singlecrystal field-effect transistors, Adv. Funct. Mater. 19(5), 763 (2009)
https://doi.org/10.1002/adfm.200801019
26 W. Deng, X. Zhang, C. Gong, Q. Zhang, Y. Xing, Y. Wu, X. Zhang, and J. Jie, Aligned nanowire arrays on thin flexible substrates for organic transistors with high bending stability, J. Mater. Chem. C 2(7), 1314 (2014)
https://doi.org/10.1039/C3TC31678E
27 C. Wang, H. Dong, L. Jiang, and W. Hu, Organic semiconductor crystals, Chem. Soc. Rev. 47(2), 422 (2018)
https://doi.org/10.1039/C7CS00490G
28 K. Ryu, I. Kymissis, V. Bulovic, and C. G. Sodini, Direct extraction of mobility in pentacene OFETs using C– V and I–V measurements, IEEE Electron Device Lett. 26(10), 716 (2005)
https://doi.org/10.1109/LED.2005.854394
29 E. G. Bittle, J. I. Basham, T. N. Jackson, O. D. Jurchescu, and D. J. Gundlach, Mobility overestimation due to gated contacts in organic field-effect transistors, Nat. Commun. 7(1), 10908 (2016)
https://doi.org/10.1038/ncomms10908
30 Y. Shi, L. Jiang, J. Liu, Z. Tu, Y. Hu, Q. Wu, Y. Yi, E. Gann, C. R. McNeill, H. Li, W. Hu, D. Zhu, and H. Sirringhaus, Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications, Nat. Commun. 9(1), 2933 (2018)
https://doi.org/10.1038/s41467-018-05390-3
31 Q. Tang, H. Li, Y. Liu, and W. Hu, High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/ nanometer ribbons, J. Am. Chem. Soc. 128(45), 14634 (2006)
https://doi.org/10.1021/ja064476f
32 J. H. Gao, R. J. Li, L. Q. Li, Q. Meng, H. Jiang, H. X. Li, and W. P. Hu, High-performance field-effect transistor based on dibenzo[d,d]thieno[3,2-b;4,5-b]dithiophene, an easily synthesized semiconductor with high ionization potential, Adv. Mater. 19(19), 3008 (2007)
https://doi.org/10.1002/adma.200701167
33 J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Very high-mobility organic single-crystal transistors with in-crystal conduction channels, Appl. Phys. Lett. 90(10), 102120 (2007)
https://doi.org/10.1063/1.2711393
34 H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Inkjet printing of single-crystal films, Nature 475(7356), 364 (2011)
https://doi.org/10.1038/nature10313
35 H. R. Tseng, L. Ying, B. B. Hsu, L. A. Perez, C. J. Takacs, G. C. Bazan, and A. J. Heeger, High mobility field effect transistors based on macroscopically oriented regioregular copolymers, Nano Lett. 12(12), 6353 (2012)
https://doi.org/10.1021/nl303612z
36 C. Luo, A. K. Kyaw, L. A. Perez, S. Patel, M. Wang, B. Grimm, G. C. Bazan, E. J. Kramer, and A. J. Heeger, General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility, Nano Lett. 14(5), 2764 (2014)
https://doi.org/10.1021/nl500758w
37 H. R. Tseng, H. Phan, C. Luo, M. Wang, L. A. Perez, S. N. Patel, L. Ying, E. J. Kramer, T. Q. Nguyen, G. C. Bazan, and A. J. Heeger, High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers, Adv. Mater. 26(19), 2993 (2014)
https://doi.org/10.1002/adma.201305084
38 Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, and Z. Bao, Ultra-high mobility transparent organic thin film transistors grown by an off-centre spincoating method, Nat. Commun. 5(1), 3005 (2014)
https://doi.org/10.1038/ncomms4005
39 J. H. Dou, Y. Q. Zheng, Z. F. Yao, T. Lei, X. Shen, X. Y. Luo, Z. A. Yu, S. D. Zhang, G. Han, Z. Wang, Y. Yi, J. Y. Wang, and J. Pei, A cofacially stacked electron-deficient small molecule with a high electron mobility of over 10 cm2·V−1·s−1 in air, Adv. Mater. 27(48), 8051 (2015)
https://doi.org/10.1002/adma.201503803
40 J. Liu, H. Zhang, H. Dong, L. Meng, L. Jiang, L. Jiang, Y. Wang, J. Yu, Y. Sun, W. Hu, and A. J. Heeger, High mobility emissive organic semiconductor, Nat. Commun. 6(1), 10032 (2015)
https://doi.org/10.1038/ncomms10032
41 Y. Q. Zheng, T. Lei, J. H. Dou, X. Xia, J. Y. Wang, C. J. Liu, and J. Pei, Strong electron-deficient polymers lead to high electron mobility in air and their morphologydependent transport behaviors, Adv. Mater. 28(33), 7213 (2016)
https://doi.org/10.1002/adma.201600541
42 G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, Tuning charge transport in solution-sheared organic semiconductors using lattice strain, Nature 480(7378), 504 (2011)
https://doi.org/10.1038/nature10683
43 H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, and Y. Liu, Highly pi-extended copolymers with diketopyrrolopyrrole moieties for high-performance fieldeffect transistors, Adv. Mater. 24(34), 4618 (2012)
https://doi.org/10.1002/adma.201201318
44 J. Li, Y. Zhao, H. S. Tan, Y. Guo, C. A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, H. Su, and B. S. Ong, A stable solution-processed polymer semiconductor with record high-mobility for printed transistors, Sci. Rep. 2(1), 754 (2012)
https://doi.org/10.1038/srep00754
45 I. Kang, T. K. An, J. A. Hong, H. J. Yun, R. Kim, D. S. Chung, C. E. Park, Y. H. Kim, and S. K. Kwon, Effect of selenophene in a DPP copolymer incorporating a vinyl group for high-performance organic field-effect transistors, Adv. Mater. 25(4), 524 (2013)
https://doi.org/10.1002/adma.201202867
46 H. Sirringhaus, 25th anniversary article: Organic fieldeffect transistors: The path beyond amorphous silicon, Adv. Mater. 26(9), 1319 (2014)
https://doi.org/10.1002/adma.201304346
47 S. Fratini, H. Xie, I. N. Hulea, S. Ciuchi, and A. F. Morpurgo, Current saturation and Coulomb interactions in organic single-crystal transistors, New J. Phys. 10(3), 033031 (2008)
https://doi.org/10.1088/1367-2630/10/3/033031
48 H. Phan, M. Wang, G. C. Bazan, and T. Q. Nguyen, Electrical instability induced by electron trapping in lowbandgap donor-acceptor polymer field-effect transistors, Adv. Mater. 27(43), 7004 (2015)
https://doi.org/10.1002/adma.201501757
49 Y. Xu, T. Minari, K. Tsukagoshi, J. A. Chroboczek, and G. Ghibaudo, Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors, J. Appl. Phys. 107(11), 114507 (2010)
https://doi.org/10.1063/1.3432716
50 F. Chiarella, M. Barra, A. Carella, L. Parlato, E. Sarnelli, and A. Cassinese, Contact-resistance effects in PDI8-CN2 n-type thin-film transistors investigated by Kelvin-probe potentiometry, Org. Electron. 28, 299 (2016)
https://doi.org/10.1016/j.orgel.2015.11.009
51 A. Ablat, A. Kyndiah, G. Houin, T. Y. Alic, L. Hirsch, and M. Abbas, Role of oxide/metal bilayer electrodes in solution processed organic field effect transistors, Sci. Rep. 9(1), 6685 (2019)
https://doi.org/10.1038/s41598-019-43237-z
52 A. Yamamura, T. Sakon, K. Takahira, T. Wakimoto, M. Sasaki, T. Okamoto, S. Watanabe, and J. Takeya, Highspeed organic single-crystal transistor responding to very high frequency band, Adv. Funct. Mater. 30(11), 1909501 (2020)
https://doi.org/10.1002/adfm.201909501
53 N. Tessler and Y. Roichman, Two-dimensional simulation of polymer field-effect transistor, Appl. Phys. Lett. 79(18), 2987 (2001)
https://doi.org/10.1063/1.1415374
54 T. J. Richards and H. Sirringhaus, Analysis of the contact resistance in staggered, top-gate organic field-effect transistors, J. Appl. Phys. 102(9), 094510 (2007)
https://doi.org/10.1063/1.2804288
55 D. Braga and G. Horowitz, High-performance organic field-effect transistors, Adv. Mater. 21(14–15), 1473 (2009)
https://doi.org/10.1002/adma.200802733
56 S. Mansouri, M. Mahdouani, A. Oudir, S. Zorai, S. Ben Dkhil, G. Horowitz, and R. Bourguiga, Analytic model for organic thin film transistors (OTFTs): Effect of contact resistances application to the octithiophene, Eur. Phys. J. Appl. Phys. 48(3), 30401 (2009)
https://doi.org/10.1051/epjap/2009163
57 C. Liu, G. Li, R. Di Pietro, J. Huang, Y. Y. Noh, X. Liu, and T. Minari, Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors, Phys. Rev. Appl. 8(3), 034020 (2017)
https://doi.org/10.1103/PhysRevApplied.8.034020
58 Y. Hu, G. Li, W. Peng, and Z. Chen, Comparing the gate dependence of contact resistance and channel resistance in organic field-effect transistors for understanding the mobility overestimation issue, IEEE Electron Device Lett. 39(3), 421 (2018)
https://doi.org/10.1109/LED.2018.2798288
59 Z. A. Lamport, H. F. Haneef, S. Anand, M. Waldrip, and O. D. Jurchescu, Tutorial: Organic field-effect transistors: Materials, structure and operation, J. Appl. Phys. 124(7), 071101 (2018)
https://doi.org/10.1063/1.5042255
60 B. H. Hamadani and D. Natelson, Temperaturedependent contact resistances in high-quality polymer field-effect transistors, Appl. Phys. Lett. 84(3), 443 (2004)
https://doi.org/10.1063/1.1639945
61 M. A. Reyes-Martinez, A. J. Crosby, and A. L. Briseno, Rubrene crystal field-effect mobility modulation via conducting channel wrinkling, Nat. Commun. 6(1), 6948 (2015)
https://doi.org/10.1038/ncomms7948
62 T. Yang, Q. Wu, F. Dai, K. Huang, H. Xu, C. Liu, C. Chen, S. Hu, X. Liang, X. Liu, Y. Y. Noh, and C. Liu, Understanding, optimizing, and utilizing nonideal transistors based on organic or organic hybrid semiconductors, Adv. Funct. Mater. 30(20), 1903889 (2020)
https://doi.org/10.1002/adfm.201903889
63 C. Liu, C. Chen, X. Li, S. Hu, C. Liu, K. Huang, F. Dai, B. Zhang, X. Liu, T. Minari, Y. Y. Noh, and J. Chen, A general approach to probe dynamic operation and carrier mobility in field‐effect transistors with nonuniform accumulation, Adv. Funct. Mater. 29(29), 1901700 (2019)
https://doi.org/10.1002/adfm.201901700
64 D. F. Figer, An upper limit to the masses of stars, Nature 434(7030), 192 (2005)
https://doi.org/10.1038/nature03293
65 C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors, Adv. Mater. 21(30), 3087 (2009)
https://doi.org/10.1002/adma.200900550
66 P. A. Bobbert, A. Sharma, S. G. Mathijssen, M. Kemerink, and D. M. de Leeuw, Operational stability of organic field-effect transistors, Adv. Mater. 24(9), 1146 (2012)
https://doi.org/10.1002/adma.201104580
67 F. V. Di Girolamo, F. Ciccullo, M. Barra, A. Carella, and A. Cassinese, Investigation on bias stress effects in n-type PDI8-CN2 thin-film transistors, Org. Electron. 13(11), 2281 (2012)
https://doi.org/10.1016/j.orgel.2012.06.044
68 H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, and K. Mullen, Ultrahigh mobility in polymer field-effect transistors by design, J. Am. Chem. Soc. 133(8), 2605 (2011)
https://doi.org/10.1021/ja108861q
69 Z. Chen, M. J. Lee, R. Shahid Ashraf, Y. Gu, S. Albert-Seifried, M. Meedom Nielsen, B. Schroeder, T. D. Anthopoulos, M. Heeney, I. McCulloch, and H. Sirringhaus, High-performance ambipolar diketopyrrolopyrrolethieno[ 3, 2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities, Adv. Mater. 24(5), 647 (2012)
https://doi.org/10.1002/adma.201102786
70 F. Fujimori, K. Shigeto, T. Hamano, T. Minari, T. Miyadera, K. Tsukagoshi, and Y. Aoyagi, Current transport in short channel top-contact pentacene field-effect transistors investigated with the selective molecular doping technique, Appl. Phys. Lett. 90(19), 193507 (2007)
https://doi.org/10.1063/1.2737418
71 T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, and H. Ito, Charge injection process in organic field-effect transistors, Appl. Phys. Lett. 91(5), 053508 (2007)
https://doi.org/10.1063/1.2759987
72 H. Kleemann, C. Schuenemann, A. A. Zakhidov, M. Riede, B. Lüssem, and K. Leo, Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility, Org. Electron. 13(1), 58 (2012)
https://doi.org/10.1016/j.orgel.2011.09.027
73 T. Minari, P. Darmawan, C. Liu, Y. Li, Y. Xu, and K. Tsukagoshi, Highly enhanced charge injection in thienoacene-based organic field-effect transistors with chemically doped contact, Appl. Phys. Lett. 100(9), 093303 (2012)
https://doi.org/10.1063/1.3690949
74 G. Lu, J. Blakesley, S. Himmelberger, P. Pingel, J. Frisch, I. Lieberwirth, I. Salzmann, M. Oehzelt, R. Di Pietro, A. Salleo, N. Koch, and D. Neher, Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors, Nat. Commun. 4(1), 1588 (2013)
https://doi.org/10.1038/ncomms2587
75 J. E. Cochran, M. J. N. Junk, A. M. Glaudell, P. L. Miller, J. S. Cowart, M. F. Toney, C. J. Hawker, B. F. Chmelka, and M. L. Chabinyc, Molecular interactions and ordering in electrically doped polymers: Blends of PBTTT and F4TCNQ, Macromolecules 47(19), 6836 (2014)
https://doi.org/10.1021/ma501547h
76 M. J. Ford, M. Wang, H. Phan, T. Q. Nguyen, and G. C. Bazan, Fullerene additives convert ambipolar transport to p-type transport while improving the operational stability of organic thin film transistors, Adv. Funct. Mater. 26(25), 4472 (2016)
https://doi.org/10.1002/adfm.201601294
77 M. Nikolka, I. Nasrallah, B. Rose, M. K. Ravva, K. Broch, A. Sadhanala, D. Harkin, J. Charmet, M. Hurhangee, A. Brown, S. Illig, P. Too, J. Jongman, I. McCulloch, J. L. Bredas, and H. Sirringhaus, High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives, Nat. Mater. 16(3), 356 (2017)
https://doi.org/10.1038/nmat4785
78 J. Panidi, A. F. Paterson, D. Khim, Z. Fei, Y. Han, L. Tsetseris, G. Vourlias, P. A. Patsalas, M. Heeney, and T. D. Anthopoulos, Remarkable enhancement of the hole mobility in several organic small-molecules, polymers, and small-molecule: Polymer blend transistors by simple admixing of the lewis acid p-dopant B(C6F5)3, Adv. Sci. 5(1), 1700290 (2018)
https://doi.org/10.1002/advs.201700290
79 K. Pei, A. H. Y. Lau, and P. K. L. Chan, Understanding molecular surface doping of large bandgap organic semiconductors and overcoming the contact/access resistance in organic field-effect transistors, Phys. Chem. Chem. Phys. 22(13), 7100 (2020)
https://doi.org/10.1039/D0CP00487A
80 C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. L. Brédas, P. C. Ewbank, and K. R. Mann, Introduction to organic thin film transistors and design of n-channel organic semiconductors, Chem. Mater. 16(23), 4436 (2004)
https://doi.org/10.1021/cm049391x
81 I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee, and M. F. Toney, Liquid-crystalline semiconducting polymers with high charge-carrier mobility, Nat. Mater. 5(4), 328 (2006)
https://doi.org/10.1038/nmat1612
82 H. Phan, M. J. Ford, A. T. Lill, M. Wang, G. C. Bazan, and T. Q. Nguyen, Electrical double-slope nonideality in organic field-effect transistors, Adv. Funct. Mater. 28(17), 1707221 (2018)
https://doi.org/10.1002/adfm.201707221
83 M. Wang, M. J. Ford, A. T. Lill, H. Phan, T. Q. Nguyen, and G. C. Bazan, Hole mobility and electron injection properties of D-A conjugated copolymers with fluorinated phenylene acceptor units, Adv. Mater. 29(7), 1603830 (2017)
https://doi.org/10.1002/adma.201603830
84 C. Goldmann, C. Krellner, K. P. Pernstich, S. Haas, D. J. Gundlach, and B. Batlogg, Determination of the interface trap density of rubrene single-crystal field-effect transistors and comparison to the bulk trap density, J. Appl. Phys. 99(3), 034507 (2006)
https://doi.org/10.1063/1.2170421
85 J. Kan, Y. Chen, D. Qi, Y. Liu, and J. Jiang, Highperformance air-stable ambipolar organic field-effect transistor based on tris(phthalocyaninato) europium(III), Adv. Mater. 24(13), 1755 (2012)
https://doi.org/10.1002/adma.201200006
86 H. Wang, H. Liu, Q. Zhao, C. Cheng, W. Hu, and Y. Liu, Three-component integrated ultrathin organic photosensors for plastic optoelectronics, Adv. Mater. 28(4), 624 (2016)
https://doi.org/10.1002/adma.201503953
87 J. Huang, Z. Mao, Z. Chen, D. Gao, C. Wei, W. Zhang, and G. Yu, Diazaisoindigo-based polymers with highperformance charge-transport properties: From computational screening to experimental characterization, Chem. Mater. 28(7), 2209 (2016)
https://doi.org/10.1021/acs.chemmater.6b00154
88 M. Nikolka, G. Schweicher, J. Armitage, I. Nasrallah, C. Jellett, Z. Guo, M. Hurhangee, A. Sadhanala, I. McCulloch, C. B. Nielsen, and H. Sirringhaus, Performance improvements in conjugated polymer devices by removal of water-induced traps, Adv. Mater. 30(36), 1801874 (2018)
https://doi.org/10.1002/adma.201801874
89 D. He, J. Qiao, L. Zhang, J. Wang, T. Lan, J. Qian, Y. Li, Y. Shi, Y. Chai, W. Lan, L. K. Ono, Y. Qi, J. B. Xu, W. Ji, and X. Wang, Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride, Sci. Adv. 3(9), e1701186 (2017)
https://doi.org/10.1126/sciadv.1701186
90 X. Cheng, Y. Y. Noh, J. Wang, M. Tello, J. Frisch, R. P. Blum, A. Vollmer, J. P. Rabe, N. Koch, and H. Sirringhaus, Controlling electron and hole charge injection in ambipolar organic field-effect transistors by selfassembled monolayers, Adv. Funct. Mater. 19(15), 2407 (2009)
https://doi.org/10.1002/adfm.200900315
91 K. A. Singh, T. L. Nelson, J. A. Belot, T. M. Young, N. R. Dhumal, T. Kowalewski, R. D. McCullough, P. Nachimuthu, S. Thevuthasan, and L. M. Porter, Effect of self-assembled monolayers on charge injection and transport in poly(3-hexylthiophene)-based field-effect transistors at different channel length scales, ACS Appl. Mater. Interfaces 3(8), 2973 (2011)
https://doi.org/10.1021/am200449x
92 J. Youn, G. R. Dholakia, H. Huang, J. W. Hennek, A. Facchetti, and T. J. Marks, Influence of Thiol selfassembled monolayer processing on bottom-contact thinfilm transistors based on n-type organic semiconductors, Adv. Funct. Mater. 22(9), 1856 (2012)
https://doi.org/10.1002/adfm.201102312
93 S. Chung, M. Jang, S. B. Ji, H. Im, N. Seong, J. Ha, S. K. Kwon, Y. H. Kim, H. Yang, and Y. Hong, Flexible high-performance all-inkjet-printed inverters: Organocompatible and stable interface engineering, Adv. Mater. 25(34), 4773 (2013)
https://doi.org/10.1002/adma.201301040
94 C. G. Tang, M. C. Ang, K. K. Choo, V. Keerthi, J. K. Tan, M. N. Syafiqah, T. Kugler, J. H. Burroughes, R. Q. Png, L. L. Chua, and P. K. Ho, Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts, Nature 539(7630), 536 (2016)
https://doi.org/10.1038/nature20133
95 J. Liu, L. Jiang, J. Shi, C. Li, Y. Shi, J. Tan, H. Li, H. Jiang, Y. Hu, X. Liu, J. Yu, Z. Wei, L. Jiang, and W. Hu, Relieving the photosensitivity of organic field-effect transistors, Adv. Mater. 32(4), 1906122 (2020)
https://doi.org/10.1002/adma.201906122
96 J. Liu, L. Jiang, W. Hu, Y. Liu, and D. Zhu, Monolayer organic field-effect transistors, Sci. China Chem. 62(3), 313 (2019)
https://doi.org/10.1007/s11426-018-9411-5
97 L. Jiang, J. Liu, Y. Shi, D. Zhu, H. Zhang, Y. Hu, J. Yu, W. Hu, and L. Jiang, Realizing low-voltage operating crystalline monolayer organic field-effect transistors with a low contact resistance, J. Mater. Chem. C 7(12), 3436 (2019)
https://doi.org/10.1039/C9TC00443B
98 L. Jiang, J. Liu, X. Lu, L. Fu, Y. Shi, J. Zhang, X. Zhang, H. Geng, Y. Hu, H. Dong, L. Jiang, J. Yu, and W. Hu, Controllable growth of C8-BTBT single crystalline microribbon arrays by a limited solvent vapor-assisted crystallization (LSVC) method, J. Mater. Chem. C 6(10), 2419 (2018)
https://doi.org/10.1039/C8TC00447A
99 T. Uemura, C. Rolin, T. H. Ke, P. Fesenko, J. Genoe, P. Heremans, and J. Takeya, On the extraction of charge carrier mobility in high-mobility organic transistors, Adv. Mater. 28(1), 151 (2016)
https://doi.org/10.1002/adma.201503133
100 Z. A. Lamport, K. J. Barth, H. Lee, E. Gann, S. Engmann, H. Chen, M. Guthold, I. McCulloch, J. E. Anthony, L. J. Richter, D. M. DeLongchamp, and O. D. Jurchescu, A simple and robust approach to reducing contact resistance in organic transistors, Nat. Commun. 9(1), 5130 (2018)
https://doi.org/10.1038/s41467-018-07388-3
101 C. Jiang, H. W. Choi, X. Cheng, H. Ma, D. Hasko, and A. Nathan, Printed subthreshold organic transistors operating at high gain and ultralow power, Science 363(6428), 719 (2019)
https://doi.org/10.1126/science.aav7057
102 R. A. Sporea, M. J. Trainor, N. D. Young, J. M. Shannon, and S. R. Silva, Source-gated transistors for order-ofmagnitude performance improvements in thin-film digital circuits, Sci. Rep. 4(1), 4295 (2015)
https://doi.org/10.1038/srep04295
103 J. Wu, C. Fan, G. Xue, T. Ye, S. Liu, R. Lin, H. Chen, H. L. Xin, R. G. Xiong, and H. Li, Interfacing solution-grown C60 and (3-Pyrrolinium)(CdCl3) single crystals for highmobility transistor-based memory devices, Adv. Mater. 27(30), 4476 (2015)
https://doi.org/10.1002/adma.201501577
104 W. Li, F. Guo, H. Ling, P. Zhang, M. Yi, L. Wang, D. Wu, L. Xie, and W. Huang, High-performance nonvolatile organic field-effect transistor memory based on organic semiconductor heterostructures of pentacene/ P13/pentacene as both charge transport and trapping layers, Adv. Sci. 4(8), 1700007 (2017)
https://doi.org/10.1002/advs.201700007
105 J. Liu, K. Zhou, J. Liu, J. Zhu, Y. Zhen, H. Dong, and W. Hu, Organic-single-crystal vertical field-effect transistors and phototransistors, Adv. Mater. 30(44), 1803655 (2018)
https://doi.org/10.1002/adma.201803655
106 K. Pei, X. Ren, Z. Zhou, Z. Zhang, X. Ji, and P. K. L. Chan, A high-performance optical memory array based on inhomogeneity of organic semiconductors, Adv. Mater. 30(13), 1706647 (2018)
https://doi.org/10.1002/adma.201706647
107 X. Wu, Y. Chu, R. Liu, H. E. Katz, and J. Huang, Pursuing polymer dielectric interfacial effect in organic transistors for photosensing performance optimization, Adv. Sci. 4(12), 1700442 (2017)
https://doi.org/10.1002/advs.201700442
[1] Wen-Jin Yin, Xiao-Long Zeng, Bo Wen, Qing-Xia Ge, Ying Xu, Gilberto Teobaldi, Li-Min Liu. The unique carrier mobility of Janus MoSSe/GaN heterostructures[J]. Front. Phys. , 2021, 16(3): 33501-.
[2] Yu Guo, Nan Gao, Yizhen Bai, Jijun Zhao, Xiao Cheng Zeng. Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility[J]. Front. Phys. , 2018, 13(4): 138117-.
[3] Hai-Ming Dong, Yi-Feng Duan, Fei Huang, Jin-Long Liu. Electron drift velocity and mobility in graphene[J]. Front. Phys. , 2018, 13(2): 137203-.
[4] Tian-Fu Gao, Zhi-Gang Zheng, Jin-Can Chen. Resonant current in coupled inertial Brownian particles with delayed-feedback control[J]. Front. Phys. , 2017, 12(6): 120506-.
[5] Tingting Zhang,Shuang Wu,Rong Yang,Guangyu Zhang. Graphene: Nanostructure engineering and applications[J]. Front. Phys. , 2017, 12(1): 127206-.
[6] Guo-Xi Nie,Yu Wang,Ji-Ping Huang. Shape effect of nanochannels on water mobility[J]. Front. Phys. , 2016, 11(6): 114702-.
[7] ZHOU Jie, LIU Zong-hua. Epidemic spreading in complex networks[J]. Front. Phys. , 2008, 3(3): 331-348.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed