Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (4) : 43500    https://doi.org/10.1007/s11467-020-1040-y
RESEARCH ARTICLE
Pairing symmetry in monolayer of orthorhombic CoSb
Tian-Zhong Yuan1, Mu-Yuan Zou1, Wen-Tao Jin2, Xin-Yuan Wei1, Xu-Guang Xu3(), Wei Li1,4()
1. 1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
2. 2Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing 100191, China
3. 3School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
4. 4Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
 Download: PDF(5213 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ferromagnetism and superconductivity are generally considered to be antagonistic phenomena in condensed matter physics. Here, we theoretically study the interplay between the ferromagnetic and superconducting orders in a recent discovered monolayered CoSb superconductor with an orthorhombic symmetry and net magnetization, and demonstrate the pairing symmetry of CoSb as a candidate of non-unitary superconductor with time-reversal symmetry breaking. By performing the group theory analysis and the first-principles calculations, the superconducting order parameter is suggested to be a triplet pairing with the irreducible representation of 3B2u, which displays intriguing nodal points and non-zero periodic modulation of Cooper pair spin polarization on the Fermi surface topologies. These findings not only provide a significant theoretical insight into the coexistence of superconductivity and ferromagnetism, but also reveal the exotic spin polarized Cooper pairing driven by ferromagnetic spin fluctuations in a triplet superconductor.

Keywords superconductivity      ferromagnetism      non-unitary pair     
Corresponding Author(s): Xu-Guang Xu,Wei Li   
Issue Date: 16 March 2021
 Cite this article:   
Tian-Zhong Yuan,Mu-Yuan Zou,Wen-Tao Jin, et al. Pairing symmetry in monolayer of orthorhombic CoSb[J]. Front. Phys. , 2021, 16(4): 43500.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1040-y
https://academic.hep.com.cn/fop/EN/Y2021/V16/I4/43500
1 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
2 M. Sato and Y. Ando, Topological superconductors: A review, Rep. Prog. Phys. 80(7), 076501 (2017)
https://doi.org/10.1088/1361-6633/aa6ac7
3 A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.- Usp. 44(10S), 131 (2001)
https://doi.org/10.1070/1063-7869/44/10S/S29
4 D. A. Ivanov, Non-Abelian statistics of half-quantum vortices in p-wave superconductors, Phys. Rev. Lett. 86(2), 268 (2001)
https://doi.org/10.1103/PhysRevLett.86.268
5 L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)
https://doi.org/10.1103/PhysRevLett.100.096407
6 K. T. Law, P. A. Lee, and T. K. Ng, Majorana fermion induced resonant Andreev reflection, Phys. Rev. Lett. 103(23), 237001 (2009)
https://doi.org/10.1103/PhysRevLett.103.237001
7 J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)
https://doi.org/10.1103/PhysRevLett.104.040502
8 G. Xu, B. Lian, P. Tang, X. L. Qi, and S. C. Zhang, Topological superconductivity on the surface of Fe-based superconductors, Phys. Rev. Lett. 117(4), 047001 (2016)
https://doi.org/10.1103/PhysRevLett.117.047001
9 N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61(15), 10267 (2000)
https://doi.org/10.1103/PhysRevB.61.10267
10 G. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B 360(2–3), 362 (1991)
https://doi.org/10.1016/0550-3213(91)90407-O
11 N. Read and G. Moore, Fractional quantum Hall effect and nonabelian statistics, Prog. Theor. Phys. Suppl. 107, 157 (1992)
https://doi.org/10.1143/PTPS.107.157
12 A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. (Amsterdam) 303(1), 2 (2003)
https://doi.org/10.1016/S0003-4916(02)00018-0
13 C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80(3), 1083 (2008)
https://doi.org/10.1103/RevModPhys.80.1083
14 J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012)
https://doi.org/10.1088/0034-4885/75/7/076501
15 C. W. J. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4(1), 113 (2013)
https://doi.org/10.1146/annurev-conmatphys-030212-184337
16 S. R. Elliott and M. Franz, Majorana fermions in nuclear, particle, and solid-state physics, Rev. Mod. Phys. 87(1), 137 (2015)
https://doi.org/10.1103/RevModPhys.87.137
17 R. Aguado, Majorana quasiparticles in condensed matter, Riv. Nuovo Cim. 40, 523 (2017)
18 V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices, Science 336(6084), 1003 (2012)
https://doi.org/10.1126/science.1222360
19 M. Deng, C. Yu, G. Huang, M. Larsson, P. Caroff, and H. Xu, Anomalous zero-bias conductance peak in a Nb– InSb nanowire-Nb hybrid device, Nano Lett. 12(12), 6414 (2012)
https://doi.org/10.1021/nl303758w
20 A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions, Nat. Phys. 8(12), 887 (2012)
https://doi.org/10.1038/nphys2479
21 M. T. Deng, S. Vaitiekènas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus, Majorana bound state in a coupled quantum-dot hybrid-nanowire system, Science 354(6319), 1557 (2016)
https://doi.org/10.1126/science.aaf3961
22 H. Zhang, C. X. Liu, S. Gazibegovic, D. Xu, J. A. Logan, G. Wang, N. van Loo, J. D. S. Bommer, M. W. A. de Moor, D. Car, R. L. M. Op het Veld, P. J. van Veldhoven, S. Koelling, M. A. Verheijen, M. Pendharkar, D. J. Pennachio, B. Shojaei, J. Sue Lee, C. J. Palmstrøm, E. P. A. M. Bakkers, S. Das Sarma, and L. P. Kouwenhoven, Quantized Majorana conductance, Nature 556(7699), 74 (2018)
23 S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, Science 346(6209), 602 (2014)
https://doi.org/10.1126/science.1259327
24 J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure, Phys. Rev. Lett. 114(1), 017001 (2015)
https://doi.org/10.1103/PhysRevLett.114.017001
25 H. H. Sun, K. W. Zhang, L. H. Hu, C. Li, G. Y. Wang, H. Y. Ma, Z. A. Xu, C. L. Gao, D. D. Guan, Y. Y. Li, C. Liu, D. Qian, Y. Zhou, L. Fu, S. C. Li, F. C. Zhang, and J. F. Jia, Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor, Phys. Rev. Lett. 116(25), 257003 (2016)
https://doi.org/10.1103/PhysRevLett.116.257003
26 A. Banerjee, C. A. Bridges, J. Q. Yan, A. A. Aczel, L. Li, M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J. Knolle, S. Bhattacharjee, D. L. Kovrizhin, R. Moessner, D. A. Tennant, D. G. Mandrus, and S. E. Nagler, Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet, Nat. Mater. 15(7), 733 (2016)
https://doi.org/10.1038/nmat4604
27 J. X. Yin, Z. Wu, J. H. Wang, Z. Y. Ye, J. Gong, X. Y. Hou, L. Shan, A. Li, X. J. Liang, X. X. Wu, J. Li, C. S. Ting, Z. Q. Wang, J. P. Hu, P. H. Hor, H. Ding, and S. H. Pan, Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se), Nat. Phys. 11(7), 543 (2015)
https://doi.org/10.1038/nphys3371
28 Q. Liu, C. Chen, T. Zhang, R. Peng, Y. J. Yan, C. H. P. Wen, X. Lou, Y. L. Huang, J. P. Tian, X. L. Dong, G. W. Wang, W. C. Bao, Q. H. Wang, Z. P. Yin, Z. X. Zhao, and D. L. Feng, Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe, Phys. Rev. X 8(4), 041056 (2018)
https://doi.org/10.1103/PhysRevX.8.041056
29 M. Chen, X. Chen, H. Yang, Z. Du, and H. H. Wen, Superconductivity with twofold symmetry in Bi2Te3/FeTe0.55Se0.45 heterostructures, Sci. Adv. 4(6), eaat1084 (2018)
https://doi.org/10.1126/sciadv.aat1084
30 D. Wang, L. Kong, P. Fan, H. Chen, S. Zhu, W. Liu, L. Cao, Y. Sun, S. Du, J. Schneeloch, R. Zhong, G. Gu, L. Fu, H. Ding, and H. J. Gao, Evidence for Majorana bound states in an iron-based superconductor, Science 362(6412), 333 (2018)
https://doi.org/10.1126/science.aao1797
31 S. Zhu, L. Kong, L. Cao, H. Chen, S. Du, Y. Xing, W. Liu, D. Wang, C. Shen, F. Yang, J. Schneeloch, R. Zhong, G. Gu, L. Fu, Y. Y. Zhang, H. Ding, and H. J. Gao, Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor, Science 367, eaax0274 (2019)
https://doi.org/10.1126/science.aax0274
32 C. Chen, K. Jiang, Y. Zhang, C. Liu, Y. Liu, Z. Wang, and J. Wang, Atomic line defects and zero-energy end states in monolayer Fe(Te,Se) high-temperature superconductors, arXiv: 2003.04539 (2020)
https://doi.org/10.1038/s41567-020-0813-0
33 C. Liu, C. Chen, X. Liu, Z. Wang, Y. Liu, S. Ye, Z. Q. Wang, J. P. Hu, and J. Wang, Zero-energy bound states in the high-temperature superconductors at the twodimensional limit, Sci. Adv. 6(13), eaax7547 (2020)
https://doi.org/10.1126/sciadv.aax7547
34 M. Sigrist and K. Ueda, Phenomenological theory of unconventional superconductivity, Rev. Mod. Phys. 63(2), 239 (1991)
https://doi.org/10.1103/RevModPhys.63.239
35 V. Kozii, J. W. F. Venderbos, and L. Fu, Threedimensional Majorana fermions in chiral superconductors, Sci. Adv. 2(12), e1601835 (2016)
https://doi.org/10.1126/sciadv.1601835
36 V. Ambegaokar and N. D. Mermin, Thermal anomalies of 3He: Pairing in a magnetic field, Phys. Rev. Lett. 30(3), 81 (1973)
https://doi.org/10.1103/PhysRevLett.30.81
37 A. J. Leggett, A theoretical description of the new phases of liquid He3, Rev. Mod. Phys. 47(2), 331 (1975)
https://doi.org/10.1103/RevModPhys.47.331
38 J. C. Wheatley, Experimental properties of superfluid 3He, Rev. Mod. Phys. 47(2), 415 (1975)
https://doi.org/10.1103/RevModPhys.47.415
39 T. Ohmi and K. Machida, Nonunitary superconducting state in UPt3, Phys. Rev. Lett. 71(4), 625 (1993)
https://doi.org/10.1103/PhysRevLett.71.625
40 J. A. Sauls, The order parameter for the superconducting phases of UPt3, Adv. Phys. 43(1), 113 (1994)
https://doi.org/10.1080/00018739400101475
41 H. Tou, Y. Kitaoka, K. Ishida, K. Asayama, N. Kimura, Y. Ōnuki, E. Yamamoto, Y. Haga, and K. Maezawa, Nonunitary spin-triplet superconductivity in UPt3: Evidence from 195Pt Knight shift study, Phys. Rev. Lett. 80(14), 3129 (1998)
https://doi.org/10.1103/PhysRevLett.80.3129
42 R. Joynt and L. Taillefer, The superconducting phases of UPt3, Rev. Mod. Phys. 74(1), 235 (2002)
https://doi.org/10.1103/RevModPhys.74.235
43 A. D. Hillier, J. Quintanilla, and R. Cywinski, Evidence for time-reversal symmetry breaking in the noncentrosymmetric superconductor LaNiC2, Phys. Rev. Lett. 102(11), 117007 (2009)
https://doi.org/10.1103/PhysRevLett.102.117007
44 J. Quintanilla, A. D. Hillier, J. F. Annett, and R. Cywinski, Relativistic analysis of the pairing symmetry of the noncentrosymmetric superconductor LaNiC2, Phys. Rev. B 82(17), 174511 (2010)
https://doi.org/10.1103/PhysRevB.82.174511
45 A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, and R. Cywinski, Nonunitary triplet pairing in the centrosymmetric superconductor LaNiGa2, Phys. Rev. Lett. 109(9), 097001 (2012)
https://doi.org/10.1103/PhysRevLett.109.097001
46 S. K. Ghosh, G. Csire, P. Whittlesea, J. F. Annett, M. Gradhand, B. Újfalussy, and J. Quintanilla, Quantitative theory of triplet pairing in the unconventional superconductor LaNiGa2, Phys. Rev. B 101, 100506(R) (2020)
https://doi.org/10.1103/PhysRevB.101.100506
47 C. Ding, G. Gong, Y. Liu, F. Zheng, Z. Zhang, H. Yang, Z. Li, Y. Xing, J. Ge, K. He, W. Li, P. Zhang, J. Wang, L. Wang, and Q. K. Xue, Signature of superconductivity in orthorhombic CoSb monolayer films on SrTiO3(001), ACS Nano 13(9), 10434 (2019)
https://doi.org/10.1021/acsnano.9b04223
48 J. F. Annett, Symmetry of the order parameter for high-temperature superconductivity, Adv. Phys. 39(2), 83 (1990)
https://doi.org/10.1080/00018739000101481
49 V. P. Mineev, Superconducting states in ferromagnetic metals, Phys. Rev. B 66(13), 134504 (2002)
https://doi.org/10.1103/PhysRevB.66.134504
50 K. V. Samokhin and M. B. Walker, Order parameter symmetry in ferromagnetic superconductors, Phys. Rev. B 66(17), 174501 (2002)
https://doi.org/10.1103/PhysRevB.66.174501
51 D. J. Singh and L. Nordstrom, Planewaves, Pseudopotentials, and the LAPW Method, 2nd Ed., Springer-Verlag, Berlin, 2006
52 P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, in: WIEN2K, An Augmented PlaneWave+ Local Orbitals Program for Calculating Crystal Properties, edited by K. Schwarz, Technical University Wien, Austria, 2001
53 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
54 W. Li, X. Y. Wei, J. X. Zhu, C. S. Ting, and Y. Chen, Pressure-induced topological quantum phase transition in Sb2Se3, Phys. Rev. B 89(3), 035101 (2014)
https://doi.org/10.1103/PhysRevB.89.035101
55 J. Kanamori, Superexchange interaction and symmetry properties of electron orbitals, J. Phys. Chem. Solids 10(2-3), 87 (1959)
https://doi.org/10.1016/0022-3697(59)90061-7
56 W. Ding, J. Zeng, W. Qin, P. Cui, and Z. Zhang, Exploringhigh transition temperature superconductivity in a freestanding or SrTiO3-supported CoSb monolayer, Phys. Rev. Lett. 124(2), 027002 (2020)
https://doi.org/10.1103/PhysRevLett.124.027002
57 M. Y. Zou, J. N. Chu, H. Zhang, T. Z. Yuan, P. Cheng, W. T. Jin, D. Jiang, X. G. Xu, W. J. Yu, Z. H. An, X. Y. Wei, G. Mu, and W. Li, Evidence the ferromagnetic order on CoSb layer of LaCoSb2, Phys. Rev. B 101(15), 155138 (2020)
https://doi.org/10.1103/PhysRevB.101.155138
58 W. Li, J. X. Zhu, Y. Chen, and C. S. Ting, First-principles calculations of the electronic structure of iron-pnictide EuFe2(As,P)2 superconductors: Evidence for antiferromagnetic spin order, Phys. Rev. B 86(15), 155119 (2012)
https://doi.org/10.1103/PhysRevB.86.155119
59 X. G. Xu and W. Li, Electronic and magnetic structures of ternary iron telluride KFe2Te2, Front. Phys. 10(4), 107403 (2015)
https://doi.org/10.1007/s11467-015-0495-8
60 D. J. Singh, Electronic structure and doping in BaFe2As2 and LiFeAs: Density functional calculations, Phys. Rev. B 78(9), 094511 (2008)
https://doi.org/10.1103/PhysRevB.78.094511
61 W. C. Huang, W. Li, and X. Liu, Exotic ferromagnetism in the two-dimensional quantum materials C3N, Front. Phys. 13(2), 137104 (2018)
https://doi.org/10.1007/s11467-017-0741-3
62 Z. Zhou, W. T. Jin, W. Li, S. Nandi, B. Ouladdiaf, Z. Yan, X. Wei, X. Xu, W. H. Jiao, N. Qureshi, Y. Xiao, Y. Su, G. H. Cao, and Th. Brückel, Universal critical behavior in the ferromagnetic superconductor Eu(Fe0.75Ru0.25)2As2, Phys. Rev. B 100, 060406(R) (2019)
https://doi.org/10.1103/PhysRevB.100.060406
63 J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3, Phys. Rev. 100(2), 564 (1955)
https://doi.org/10.1103/PhysRev.100.564
64 S. Maekawa, T. Tohyama, S. E. Barnes, S. Ishihara, W. Koshibae, and G. Khaliullin, Physics of Transition Metal Oxides, Berlin Heidelberg: Springer-Verlag, 2004
https://doi.org/10.1007/978-3-662-09298-9
65 W. Li, Z. Liu, Y. S. Wu, and Y. Chen, Exotic fractional topological states in a two-dimensional organometallic material, Phys. Rev. B 89(12), 125411 (2014)
https://doi.org/10.1103/PhysRevB.89.125411
66 W. Li, J. Li, J. X. Zhu, Y. Chen, and C. S. Ting, Pairing symmetry in the iron-pnictide superconductor KFe2As2, EPL 99(5), 57006 (2012)
https://doi.org/10.1209/0295-5075/99/57006
67 K. Hattori and H. Tsunetsugu, p-wave superconductivity near a transverse saturation field, Phys. Rev. B 87(6), 064501 (2013)
https://doi.org/10.1103/PhysRevB.87.064501
68 Y. Tada, S. Takayoshi, and S. Fujimoto, Magnetism and superconductivity in ferromagnetic heavy-fermion system UCoGe under in-plane magnetic fields, Phys. Rev. B 93(17), 174512 (2016)
https://doi.org/10.1103/PhysRevB.93.174512
69 C. Kallin and J. Berlinsky, Chiral superconductors, Rep. Prog. Phys. 79(5), 054502 (2016)
https://doi.org/10.1088/0034-4885/79/5/054502
[1] Lei Qiao, Ning-hua Wu, Tianhao Li, Siqi Wu, Zhuyi Zhang, Miaocong Li, Jiang Ma, Baijiang Lv, Yupeng Li, Chenchao Xu, Qian Tao, Chao Cao, Guang-Han Cao, Zhu-An Xu. Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure[J]. Front. Phys. , 2021, 16(6): 63501-.
[2] Yuan-Qiao Li, Tao Zhou. Impurity effect as a probe for the pairing symmetry of graphene-based superconductors[J]. Front. Phys. , 2021, 16(4): 43502-.
[3] Mike Guidry, Yang Sun, Lian-Ao Wu, Cheng-Li Wu. Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity[J]. Front. Phys. , 2020, 15(4): 43301-.
[4] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[5] Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2[J]. Front. Phys. , 2019, 14(1): 13501-.
[6] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[7] Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu. Theoretical studies of superconductivity in doped BaCoSO[J]. Front. Phys. , 2018, 13(3): 137502-.
[8] Wen-Cheng Huang, Wei Li, Xiaosong Liu. Exotic ferromagnetism in the two-dimensional quantum material C3N[J]. Front. Phys. , 2018, 13(2): 137104-.
[9] Ryszard Gonczarek, Mateusz Krzyzosiak, Adam Gonczarek, Lucjan Jacak. Analytical assessment of some characteristic ratios for s-wave superconductors[J]. Front. Phys. , 2018, 13(2): 137403-.
[10] R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides[J]. Front. Phys. , 2018, 13(2): 137401-.
[11] Qian Chen,Xiaohui Yang,Xiaojun Yang,Jian Chen,Chenyi Shen,Pan Zhang,Yupeng Li,Qian Tao,Zhu-An Xu. Enhanced superconductivity in hole-doped Nb2PdS5[J]. Front. Phys. , 2017, 12(5): 127402-.
[12] Mateusz Krzyzosiak, Ryszard Gonczarek, Adam Gonczarek, Lucjan Jacak. Applications of the conformal transformation method in studies of composed superconducting systems[J]. Front. Phys. , 2016, 11(6): 117407-.
[13] Jiangping Hu,Jing Yuan. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity[J]. Front. Phys. , 2016, 11(5): 117404-.
[14] Mike Guidry, Yang Sun. Superconductivity and superfluidity as universal emergent phenomena[J]. Front. Phys. , 2015, 10(4): 107404-.
[15] Wang Rui-Feng(王瑞峰). A possible interplay between electron beams and magnetic fluxes in the Aharonov–Bohm effect[J]. Front. Phys. , 2015, 10(3): 100305-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed