Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (2) : 137403    https://doi.org/10.1007/s11467-017-0739-x
RESEARCH ARTICLE
Analytical assessment of some characteristic ratios for s-wave superconductors
Ryszard Gonczarek1, Mateusz Krzyzosiak2(), Adam Gonczarek3, Lucjan Jacak1
1. Faculty of Fundamental Problems of Technology, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
2. University of Michigan–Shanghai Jiao Tong University Joint Institute, 800 Dongchuan Road, Shanghai 200240, China
3. Faculty of Computer Science and Management, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
 Download: PDF(748 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We evaluate some thermodynamic quantities and characteristic ratios that describe low- and hightemperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range TTc are discussed using the method of successive approximations. The equation for the ratio R1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low-Tc superconductors. The prospect of application of the presented model in studies of high-Tc superconductors and other superconducting systems of the new generation is also discussed.

Keywords superconductivity      characteristic ratios      fluctuation of the DoS     
Corresponding Author(s): Mateusz Krzyzosiak   
Issue Date: 24 January 2018
 Cite this article:   
Ryszard Gonczarek,Mateusz Krzyzosiak,Adam Gonczarek, et al. Analytical assessment of some characteristic ratios for s-wave superconductors[J]. Front. Phys. , 2018, 13(2): 137403.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0739-x
https://academic.hep.com.cn/fop/EN/Y2018/V13/I2/137403
1 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1−xFx]FeAs (x= 0.05–0.12) with Tc= 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
https://doi.org/10.1021/ja800073m
2 H. Hosono and K. Kuroki, Iron-based superconductors: Current status of materials and pairing mechanism, Physica C 514, 399 (2015)
https://doi.org/10.1016/j.physc.2015.02.020
3 M. Krzyzosiak, R. Gonczarek, A. Gonczarek, and L. Jacak, Conformal Transformation Method in Studies of High-Tc Superconductors – Beyond the Van Hove Scenario in: Superconductivity and Superconducting Wires, Eds. D. Matteri and L. Futino, Nova Science Publishers, Hauppage, New York, 2010, Ch. 5
4 R. Gonczarek and M. Krzyzosiak, Model of Superconductivity in the Singular Fermi Liquid in: Progress in Superconductivity Research, Ed. O. A. Chang, Nova Science Publishers, Hauppage, New York, 2008, Ch. 6
5 R. Gonczarek and M. Krzyzosiak, Conformal transformation method and symmetry aspects of the group C4v in a model of high-Tc superconductors with anisotropic gap, Physica C 426(431), 278 (2005)
https://doi.org/10.1016/j.physc.2005.01.023
6 R. Gonczarek, L. Jacak, M. Krzyzosiak, and A. Gonczarek, Competition mechanism between singlet and triplet superconductivity in the tight-binding model with anisotropic attractive potential, Eur. Phys. J. B 49(2), 171 (2006)
https://doi.org/10.1140/epjb/e2006-00047-7
7 R. Gonczarek, M. Krzyzosiak, L. Jacak, and A. Gonczarek, Coexistence of spin-singlet s- and d-wave and spin-triplet p-wave order parameters in anisotropic superconductors, phys. stat. sol. (b) 244, 3559 (2007)
8 R. Gonczarek, M. Krzyzosiak, and A. Gonczarek, Islands of stability of the d-wave order parameter in s-wave anisotropic superconductors, Eur. Phys. J. B 61(3), 299 (2008)
https://doi.org/10.1140/epjb/e2008-00072-6
9 D. Kasinathan, K. W. Lee, and W. E. Pickett, On heavy carbon doping of MgB2, Physica C 424(3–4), 116 (2005)
https://doi.org/10.1016/j.physc.2005.05.002
10 J. Kortus, O. V. Dolgov, R. K. Kremer, and A. A. Golubov, Band filling and interband scattering effects in MgB2: Carbon versus aluminum doping, Phys. Rev. Lett. 94(2), 027002 (2005)
https://doi.org/10.1103/PhysRevLett.94.027002
11 W. S. Agrestini, C. Metallo, M. Filippi, L. Simonelli, G. Campi, C. Sanipoli, E. Liarokapis, S. De Negri, M. Giovannini, A. Saccone, A. Latini, and A. Bianconi, Substitution of Sc for Mg in MgB2: Effects on transition temperature and Kohn anomaly, Phys. Rev. B 70(13), 134514 (2004)
https://doi.org/10.1103/PhysRevB.70.134514
12 H. Mori, T. Okano, M. Kamiya, M. Haemori, H. Suzuki, S. Tanaka, Y. Nishio, K. Kajita, and H. Moriyama, Bandwidth and band filling control in organic conductors, Physica C357–360, 103 (2001)
https://doi.org/10.1016/S0921-4534(01)00176-9
13 M. Mulak and R. Gonczarek, Structures of thermodynamic functions for S-paired fermi systems in parametric equations approach, Acta Phys. Pol. A 89(5–6), 689 (1996)
https://doi.org/10.12693/APhysPolA.89.689
14 A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill Book Company, 1971, §51
15 N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, 1976, Ch. 34 Superconductivity
16 C. Kittel, Introduction to Solid State Physics, John Wiley and Sons, Inc. NY, 1966, Ch. 11
17 J. Spałek, Introduction to Condensed Matter Physics, Wydawnictwo Naukowe PWN SA, Warszawa, 2015, Ch. 17
18 H. Ibach and H. Lüth, Solid State Physics. An Introduction to Principles of Material Science, Berlin Heidelberg: Springer-Verlag, 1995, Ch. 10.5
19 M. Cyrot and D. Pavuna, Introduction to Superconductivity and High-Tc Materials, World Scientific Publ. Co. (London, New Jersey, Singapore, Hong Kong, Bangalore, Beijing, 1992), Ch. 7.1
https://doi.org/10.1142/1039
20 A. P. Durajski, R. Szcze¸śniak, and Y. Li, Non-BCS thermodynamic properties of H2S superconductor, Physica C 515, 1 (2015)
https://doi.org/10.1016/j.physc.2015.04.005
21 A. P. Durajski and R. Szcze¸śniak, Estimation of the superconducting parameters for silane at high pressure, Mod. Phys. Lett. B 28(07), 1450052 (2014)
https://doi.org/10.1142/S0217984914500523
22 R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik, Specific heat and thermodynamic critical field for calcium under the pressure at 120 GPa, Mod. Phys. Lett. B 26(08), 1250050 (2012)
https://doi.org/10.1142/S0217984912500509
23 B. Lorenz, J. Cmaidalka, R. L. Meng, and C. W. Chu, Thermodynamic properties and pressure effect on the superconductivity in CaAlSi and SrAlSi, Phys. Rev. B 68(1), 014512 (2003)
https://doi.org/10.1103/PhysRevB.68.014512
24 A. P. Durajski, Quantitative analysis of nonadiabatic effects in dense H3S and PH3 superconductors, Sci. Rep. 6(1), 38570 (2016)
https://doi.org/10.1038/srep38570
25 A. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525(7567), 73 (2015)
https://doi.org/10.1038/nature14964
26 M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, Crystal structure of the superconducting phase of sulfur hydride, Nat. Phys. 12(9), 835 (2016)
27 Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, The metallization and superconductivity of dense hydrogen sulfide, J. Chem. Phys. 140(17), 174712 (2014)
https://doi.org/10.1063/1.4874158
28 R. Gonczarek, M. Gładysiewicz, and M. Mulak, On possible formalism of anisotropic fermi liquid and BCS– type superconductivity, Int. J. Mod. Phys. B 15(05), 491 (2001)
https://doi.org/10.1142/S0217979201004459
29 F. C. Zhang and T. M. Rice, Effective Hamiltonian for the superconducting Cu oxides, Phys. Rev. B 37(7), 3759 (1988)
https://doi.org/10.1103/PhysRevB.37.3759
30 R. Szcze¸śniak and A. P. Durajski, The thermodynamic properties of the high-pressure superconducting state in the hydrogen-rich compounds, Solid State Sci. 25, 45 (2013)
https://doi.org/10.1016/j.solidstatesciences.2013.07.023
31 R. Szcze¸śniak and A. P. Durajski, Superconducting state above the boiling point of liquid nitrogen in the GaH3 compound, Supercond. Sci. Technol. 27(1), 015003 (2013)
https://doi.org/10.1088/0953-2048/27/1/015003
32 D. Y. Xing, M. Liu, Y. G. Wang, and J. Dong, Analytic approach to the antiferromagnetic van Hove singularity model for high-Tc superconductors, Phys. Rev. B 60(13), 9775 (1999)
https://doi.org/10.1103/PhysRevB.60.9775
33 E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen, Band-structure trend in holedoped cuprates and correlation with Tc max, Phys. Rev. Lett. 87(4), 047003 (2001)
https://doi.org/10.1103/PhysRevLett.87.047003
34 O. K. Andersen, A. I. Liechtenstein, O. Jepsen, and F. Paulsen, LDA energy bands, low-energy hamiltonians, t′, t′′, t^(k), and J^, J. Phys. Chem. Solids 56(12), 1573 (1995) O. K. Andersen, S. Y. Savrasov, O. Jepsen, and A. I. Liechtenstein, Out-of-plane instability and electronphonon contribution tos- and d-wave pairing in hightemperature superconductors; LDA linear-response calculation for doped CaCuO2 and a generic tight-binding model, J. Low Temp. Phys. 105(3–4), 285 (1996)
https://doi.org/10.1007/BF00768402
35 R. Gonczarek and M. Krzyzosiak, Some universal relations between the gap and thermodynamic functions plausible for various models of superconductors, phys. stat. sol. (b) 238, 29 (2003)
36 R. Szczee¸śniak, A. P. Durajski, and L. Herok, Theoretical description of the SrPt3P superconductor in the strongcoupling limit, Phys. Scr. 89(12), 125701 (2014)
https://doi.org/10.1088/0031-8949/89/12/125701
37 R. Szczee¸śniak and A. P. Durajski, The Energy Gap in the (Hg1−xSnx)Ba2Ca2Cu3O8+y Superconductor, Journal of Superconductivity and Novel Magnetism 27(6), 1363 (2014)
https://doi.org/10.1007/s10948-013-2472-1
38 R. Szczee¸śniak and A. P. Durajski, Thermodynamics of the superconducting state in calcium at 200 GPa, Journal of Superconductivity and Novel Magnetism 25(2), 399 (2012)
https://doi.org/10.1007/s10948-011-1326-y
39 M. Krzyzosiak, R. Gonczarek, A. Gonczarek, and L. Jacak, Applications of the conformal transformation method in studies of composed superconducting systems, Front. Phys. 11(6), 117407 (2016)
https://doi.org/10.1007/s11467-016-0579-0
40 R. Baquero, D. Quesada, and C. Trallero-Giner, BCSuniversal ratios within the Van Hove scenario, Physica C 271(1–2), 122 (1996)
https://doi.org/10.1016/S0921-4534(96)00551-5
41 M. Mulak and R. Gonczarek, Discontinuous phase transitions in S-paired Fermi systems, Acta Physica Polonica A 92, 1177 (1997)
https://doi.org/10.12693/APhysPolA.92.1177
42 R. Gonczarek, M. Krzyzosiak, and M. Mulak, Valuation of characteristic ratios for high-Tc superconductors with anisotropic gap in the conformal transformation method, J. Phys. A 37(18), 4899 (2004)
https://doi.org/10.1088/0305-4470/37/18/001
43 R. Gonczarek, M. Gładysiewicz, and M. Mulak, Equilibrium states and thermodynamical properties of d-wave paired HTSC in the tight-binding model, phys. stat. sol. (b) 233, 351 (2002)
44 R. Gonczarek and M. Mulak, Enhancement of critical temperature of superconductors implied by the local fluctuation of EDOS, Phys. Lett. A 251(4), 262 (1999)
https://doi.org/10.1016/S0375-9601(98)00905-0
45 J. Bouvier and J. Bok, The gap symmetry and fluctuations in high Tc superconductors, Eds. J. Bok, G. Deutscher, D. Pavuna, and S. Wolf, Plenum Press, New York, 1998, p. 37
46 R. Baquero, D. Quesada, and C. Trallero-Giner, BCSuniversal ratios within the Van Hove scenario, Physica C 271(1–2), 122 (1996)
https://doi.org/10.1016/S0921-4534(96)00551-5
47 R. Gonczarek, M. Krzyzosiak, A. Gonczarek, and L. Jacak, New classes of integrals inherent in the mathematical structure of extended equations describing superconducting systems, Int. J. Mod. Phys. B 29(17), 1550117 (2015)
https://doi.org/10.1142/S0217979215501179
48 R. Gonczarek, M. Krzyzosiak, A. Gonczarek, and L. Jacak, On new families of integrals in analytical studies of superconductors within the conformal transformation method, Adv. Condens. Matter Phys. 2015, 1 (2015)
https://doi.org/10.1155/2015/835897
49 A. Bianconi and M. Filippi, Feshbach Shape Resonances in Multiband high Tc Superconductors in: Symmetry and Heterogeneity in High Temperature Superconductors, Ed. A. Bianconi, NATO Science Series (II): Mathematics, Physics and Chemistry- Vol. 2014, Springer 2006, Ch. 1.2
50 J. K. Ren, X. B. Zhu, H. F. Yu, Y. Tian, H. F. Yang, C. Z. Gu, N. L. Wang, Y. F. Ren, and S. P. Zhao, Energy gaps in Bi2Sr2CaCu2O8+d cuprate superconductors, Sci. Rep. 2(1), 248 (2012)
https://doi.org/10.1038/srep00248
51 T. J. Reber, S. Parham, N. C. Plumb, Y. Cao, H. Li, Z. Sun, Q. Wang, H. Iwasawa, M. Arita, J. S. Wen, Z. J. Xu, G. D. Gu, Y. Yoshida, H. Eisaki, G. B. Arnold, and D. S. Dessau, Pairing, pair-breaking, and their roles in setting the Tc of cuprate high temperature superconductors, arXiv: 1508.06252v1 (2015)
[1] Mike Guidry, Yang Sun, Lian-Ao Wu, Cheng-Li Wu. Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity[J]. Front. Phys. , 2020, 15(4): 43301-.
[2] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[3] Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2[J]. Front. Phys. , 2019, 14(1): 13501-.
[4] Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu. Theoretical studies of superconductivity in doped BaCoSO[J]. Front. Phys. , 2018, 13(3): 137502-.
[5] R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides[J]. Front. Phys. , 2018, 13(2): 137401-.
[6] Qian Chen,Xiaohui Yang,Xiaojun Yang,Jian Chen,Chenyi Shen,Pan Zhang,Yupeng Li,Qian Tao,Zhu-An Xu. Enhanced superconductivity in hole-doped Nb2PdS5[J]. Front. Phys. , 2017, 12(5): 127402-.
[7] Mateusz Krzyzosiak, Ryszard Gonczarek, Adam Gonczarek, Lucjan Jacak. Applications of the conformal transformation method in studies of composed superconducting systems[J]. Front. Phys. , 2016, 11(6): 117407-.
[8] Jiangping Hu,Jing Yuan. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity[J]. Front. Phys. , 2016, 11(5): 117404-.
[9] Mike Guidry, Yang Sun. Superconductivity and superfluidity as universal emergent phenomena[J]. Front. Phys. , 2015, 10(4): 107404-.
[10] Wang Rui-Feng(王瑞峰). A possible interplay between electron beams and magnetic fluxes in the Aharonov–Bohm effect[J]. Front. Phys. , 2015, 10(3): 100305-.
[11] Dingping Li, Baruch Rosenstein, B. Ya. Shapiro, I. Shapiro. Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator[J]. Front. Phys. , 2015, 10(3): 107402-.
[12] Qijin Chen, Jibiao Wang. Pseudogap phenomena in ultracold atomic Fermi gases[J]. Front. Phys. , 2014, 9(5): 539-570.
[13] Jiajun Ouyang, W. LiMing, Liangbin Hu. Andreev reflection and tunneling spectrum on metal–superconductor–metal junctions[J]. Front. Phys. , 2012, 7(4): 449-452.
[14] Elbio Dagotto, Adriana Moreo, Andrew Nicholson, Qinglong Luo, Shuhua Liang, Xiaotian Zhang. Properties of the multiorbital Hubbard models for the iron-based superconductors[J]. Front. Phys. , 2011, 6(4): 379-397.
[15] Han-Yong Choi, Chandra M. Varma, Xing-jiang Zhou. Superconductivity in the cuprates: Deduction of mechanism for d-wave pairing through analysis of ARPES[J]. Front. Phys. , 2011, 6(4): 440-449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed