|
|
Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity |
Jiangping Hu1,2,3,*( ),Jing Yuan1 |
1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2. Department of Physics, Purdue University, West Lafayette, IN 47907, USA 3. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A1gs-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high-Tc superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high-Tc superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: superconductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high-Tc superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high-Tc superconductivity.
|
Keywords
iron-based superconductors
cuprates
unconventional superconductivity
high-temperature superconductors
|
Corresponding Author(s):
Jiangping Hu
|
Online First Date: 19 April 2016
Issue Date: 08 June 2016
|
|
1 |
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based superconductor with LaO1-xFxFeAs (x= 0.05-0.12) with Tc = 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
https://doi.org/10.1021/ja800073m
|
2 |
N. Wang, H. Hosono, and P. Dai, Iron-Based Superconductors: Materials, Properties and Mechanisms, Pan Stanford Publishing PTE Ltd., 2012
|
3 |
D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides, Adv. Phys. 59(6), 803 (2010)
https://doi.org/10.1080/00018732.2010.513480
|
4 |
E. Dagotto, The unexpected properties of alkali metal iron selenide superconductors, Rev. Mod. Phys. 85(2), 849 (2013)
https://doi.org/10.1103/RevModPhys.85.849
|
5 |
P. Dai, J. Hu, and E. Dagotto, Magnetism and its microscopic origin in iron-based high-temperature superconductors, Nat. Phys. 8(10), 709 (2012)
https://doi.org/10.1038/nphys2438
|
6 |
P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys. 74(12), 124508 (2011)
https://doi.org/10.1088/0034-4885/74/12/124508
|
7 |
J. Hu, Iron-based superconductors as odd parity superconductors, Phys. Rev. X 3(3), 031004 (2013)
https://doi.org/10.1103/PhysRevX.3.031004
|
8 |
N. Hao and J. Hu, Odd parity pairing and nodeless antiphase s in iron-based superconductors, Phys. Rev. B 89(4), 045144 (2014)
https://doi.org/10.1103/PhysRevB.89.045144
|
9 |
C. C. Tsuei and J. R. Kirtley, Pairing symmetry in cuprate superconductors, Rev. Mod. Phys. 72(4), 969 (2000)
https://doi.org/10.1103/RevModPhys.72.969
|
10 |
D. J. Scalapino, The cuprate pairing mechanism, Science 284(5418), 1282 (1999)
https://doi.org/10.1126/science.284.5418.1282
|
11 |
P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind high-temperature superconducting cuprates: The “plain vanilla” version of RVB, J. Phys.: Condens. Matter 16(24), R755 (2004)
https://doi.org/10.1088/0953-8984/16/24/R02
|
12 |
Q. Si and E. Abrahams, Strong correlations and magnetic frustration in the high-Tc iron pnictides, Phys. Rev. Lett. 101(7), 076401 (2008)
https://doi.org/10.1103/PhysRevLett.101.076401
|
13 |
K. J. Seo, B. A. Bernevig, and J. P. Hu, Pairing symmetry in a two-orbital exchange coupling model of oxypnictides, Phys. Rev. Lett. 101(20), 206404 (2008)
https://doi.org/10.1103/PhysRevLett.101.206404
|
14 |
C. Fang, Y. L. Wu, R. Thomale, B. A. Bernevig, and J. Hu, Robustness of s-wave pairing in electron-overdoped A1-yFe2-xSe2, Phys. Rev. X 1(1), 011009 (2011)
https://doi.org/10.1103/PhysRevX.1.011009
|
15 |
P. Richard, T. Qian, and H. Ding, ARPES measurements of the superconducting gap of Fe-based superconductors and their implications to the pairing mechanism, arXiv: 1503.07269 (2015)
|
16 |
Q. Fan, W. H. Zhang, X. Liu, Y. J. Yan, M. Q. Ren, R. Peng, H. C. Xu, B. P. Xie, J. P. Hu, T. Zhang, and D. L. Feng, Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunneling microscopy, arXiv: 1504.02185 (2015)
|
17 |
X. H. Niu, R. Peng, H. C. Xu, Y. J. Yan, J. Jiang, D. F. Xu, T. L. Yu, Q. Song, Z. C. Huang, Y. X. Wang, B. P. Xie, X. F. Lu, N. Z. Wang, X. H. Chen, Z. Sun, and D. L. Feng, Surface electronic structure and isotropic superconducting gap in Li0.8Fe0.2OHFeSe, arXiv: 1506.02825 (2015)
|
18 |
L. Zhao, A. Liang, D. Yuan, Y. Hu, D. Liu, J. Huang, S. He, B. Shen, Y. Xu, X. Liu, L. Yu, G. Liu, H. Zhou, Yulong Huang, X. Dong, F. Zhou, Z. Zhao, C. Chen, Z. Xu, and X. J. Zhou, Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/ SrTiO3 films, arXiv: 1505.6361 (2015)
|
19 |
P. A. Lee and X. G. Wen, Spin-triplet p-wave pairing in a three-orbital model for iron pnictide superconductors, Phys. Rev. B 78(14), 144517 (2008)
https://doi.org/10.1103/PhysRevB.78.144517
|
20 |
V. Cvetkovic and O. Vafek, Space group symmetry, spin-orbit coupling, and the low-energy effective hamiltonian for iron-based superconductors, Phys. Rev. B 88(13), 134510 (2013)
https://doi.org/10.1103/PhysRevB.88.134510
|
21 |
Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater. 10(4), 273 (2011)
https://doi.org/10.1038/nmat2981
|
22 |
Q. Y. Wang, Z. Li, W. H. Zhang, Z. C. Zhang, J. S. Zhang, W. Li, H. Ding, Y. B. Ou, P. Deng, K. Chang, J. Wen, C. L. Song, K. He, J. F. Jia, S. H. Ji, Y. Y. Wang, L. L. Wang, X. Chen, X. C. Ma, and Q. K. Xue, Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3, Chin. Phys. Lett. 29(3), 037402 (2012)
https://doi.org/10.1088/0256-307X/29/3/037402
|
23 |
S. L. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y. B. Ou, Q. Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films, Nat. Mater. 12(7), 605 (2013)
https://doi.org/10.1038/nmat3648
|
24 |
S. Y. Tan, Y. Zhang, M. Xia, Z. Ye, F. Chen, X. Xie, R. Peng, D. Xu, Q. Fan, H. Xu, J. Jiang, T. Zhang, X. Lai, T. Xiang, J. Hu, B. Xie, and D. Feng, Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films, Nat. Mater. 12(7), 634 (2013)
https://doi.org/10.1038/nmat3654
|
25 |
M. Xu, Q. Q. Ge, R. Peng, Z. R. Ye, J. Jiang, F. Chen, X. P. Shen, B. P. Xie, Y. Zhang, A. F. Wang, X. F. Wang, X. H. Chen, and D. L. Feng, Evidence for an s-wave superconducting gap in KxFe2-ySe2 from angle-resolved photoemission, Phys. Rev. B 85(22), 220504 (2012)
https://doi.org/10.1103/PhysRevB.85.220504
|
26 |
X. Liu, L. Zhao, S. He, J. He, D. Liu, D. Mou, B. Shen, Y. Hu, J. Huang, and X. J. Zhou, Electronic structure and superconductivity of FeSe-related superconductors, J. Phys.: Condens. Matter 27(18), 183201 (2015)
https://doi.org/10.1088/0953-8984/27/18/183201
|
27 |
I. I. Mazin, Symmetry analysis of possible superconducting states in KxFe2Se2 superconductors, Phys. Rev. B 84(2), 024529 (2011)
https://doi.org/10.1103/PhysRevB.84.024529
|
28 |
F. F. Tafti, A. Ouellet, A. Juneau-Fecteau, S. Faucher, M. Lapointe-Major, N. Doiron-Leyraud, A. F. Wang, X. G. Luo, X. H. Chen, and L. Taillefer, Universal V-shaped temperature-pressure phase diagram in the iron-based superconductors KFe2As2, RbFe2As2, and CsFe2As2, Phys. Rev. B 91(5), 054511 (2015)
https://doi.org/10.1103/PhysRevB.91.054511
|
29 |
Y. Ota, K. Okazaki, Y. Kotani, T. Shimojima, W. Malaeb, S. Watanabe, C.T. Chen, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Saito, H. Fukazawa, Y. Kohori, and S. Shin, Evidence for excluding the possibility of d-wave superconducting-gap symmetry in Ba-doped KFe2As2, Phys. Rev. B 89(8), 081103 (2014)
https://doi.org/10.1103/PhysRevB.89.081103
|
30 |
K. Okazaki, Y. Ota, Y. Kotani, W. Malaeb, Y. Ishida, T. Shimojima, T. Kiss, S. Watanabe, C. T. Chen, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Saito, H. Fukazawa, Y. Kohori, K. Hashimoto, T. Shibauchi, Y. Matsuda, H. Ikeda, H. Miyahara, R. Arita, A. Chainani, and S. Shin, Octet-line node structure of superconducting order parameter in KFe2As2, Science 337(6100), 1314 (2012)
https://doi.org/10.1126/science.1222793
|
31 |
Y. Zhang, Z. R. Ye, Q. Q. Ge, F. Chen, J. Jiang, M. Xu, B. P. Xie, and D. L. Feng, Nodal superconducting-gap structure in ferropnictide superconductor BaFe2(As0.7P0.3)2, Nat. Phys. 8(5), 371 (2012)
https://doi.org/10.1038/nphys2248
|
32 |
X. Qiu, S. Y. Zhou, H. Zhang, B. Y. Pan, X. C. Hong, Y. F. Dai, M. J. Eom, J. S. Kim, Z. R. Ye, Y. Zhang, D. L. Feng, and S. Y. Li, Robust nodal superconductivity induced by isovalent doping in Ba(Fe1-xRux)2As2 and BaFe2(As1-xPx)2, Phys. Rev. X 2(1), 011010 (2012)
https://doi.org/10.1103/PhysRevX.2.011010
|
33 |
N. Bickers, D. J. Scalapino, and R. T. Scalettar, Cdw and sdw mediated pairing interactions, Int. J. Mod. Phys. B 01(03n04), 687 (1987)
|
34 |
M. Inui, S. Doniach, P. Hirschfeld, and A. Ruckenstein, Coexistence of antiferromagnetism and superconductivity in a mean-field theory of high-Tc superconductors, Phys. Rev. B 37(4), 2320 (1988)
https://doi.org/10.1103/PhysRevB.37.2320
|
35 |
C. Gros, D. Poilblanc, T. M. Rice, and F. C. Zhang, Superconductivity in correlated wavefunctions, Physica C153–155, 543 (1988)
https://doi.org/10.1016/0921-4534(88)90715-0
|
36 |
G. Kotliar and J. Liu, Superexchange mechanism and d-wave superconductivity, Phys. Rev. B 38(7), 5142 (1988)
https://doi.org/10.1103/PhysRevB.38.5142
|
37 |
W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schnhammer, Functional renormalization group approach to correlated fermion systems, Rev. Mod. Phys. 84(1), 299 (2012)
https://doi.org/10.1103/RevModPhys.84.299
|
38 |
F. C. Zhang and T. M. Rice, Effective hamiltonian for the superconducting Cu oxides, Phys. Rev. B 37(7), 3759 (1988)
https://doi.org/10.1103/PhysRevB.37.3759
|
39 |
S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides, New J. Phys. 11(2), 025016 (2009)
https://doi.org/10.1088/1367-2630/11/2/025016
|
40 |
S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and A. V. Chubukov, Evolution of the superconducting state of Fe-based compounds with doping, Phys. Rev. Lett. 107(14), 147002 (2011)
https://doi.org/10.1103/PhysRevLett.107.147002
|
41 |
F. Wang, H. Zhai, and D. H. Lee, Nodes in the gap function of LaFePo, the gap function of the Fe(Se,Te) systems, and the STM signature of the s pairing, Phys. Rev. B 81(18), 184512 (2010)
https://doi.org/10.1103/PhysRevB.81.184512
|
42 |
T. A. Maier, S. Graser, P. J. Hirschfeld, and D. J. Scalapino, d-wave pairing from spin fluctuations in the KxFe2-ySe2 superconductors, Phys. Rev. B 83(10), 100515 (2011)
https://doi.org/10.1103/PhysRevB.83.100515
|
43 |
R. Thomale, C. Platt, W. Hanke, J. Hu, and B. A. Bernevig, Exotic d-wave superconductivity in strongly hole doped KxBa1-xFe2As2, Phys. Rev. Lett. 107(11), 117001 (2011)
https://doi.org/10.1103/PhysRevLett.107.117001
|
44 |
J. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Sci. Rep. 2, 381 (2012)
https://doi.org/10.1038/srep00381
|
45 |
J. S. Davis and D. H. Lee, Concepts relating magnetic interactions, interwined electronic orders, and strongly correlated superconductivity, Proc. Natl. Acad. Sci. USA 110(44), 17623 (2013)
https://doi.org/10.1073/pnas.1316512110
|
46 |
J. Hu, B. Xu, W. Liu, N. N. Hao, and Y. Wang, Unified minimum effective model of magnetic properties of iron-based superconductors, Phys. Rev. B 85(14), 144403 (2012)
https://doi.org/10.1103/PhysRevB.85.144403
|
47 |
F. Ma, W. Ji, J. Hu, Z.-Y. Lu, and T. Xiang, First-principles calculations of the electronic structure of tetragonal alpha-FeTe and alpha-FeSe crystals: Evidence for a bicollinear antiferromagnetic order, Phys. Rev. Lett. 102, 177003 (2009)
https://doi.org/10.1103/PhysRevLett.102.177003
|
48 |
A. L. Wysocki, K. D. Belashchenko, and V. P. Antropov, Consistent model of magnetism in ferropnictides, Nat. Phys. 7(6), 485 (2011)
https://doi.org/10.1038/nphys1933
|
49 |
J. K. Glasbrenner, I. I. Mazin, H. Jeschke, P. J. Hirschfeld, and R. Valent, Effect of magnetic frustration on nematicity and superconductivity in Fe chalcogenides, arXiv: 1501.04946 (2015)
|
50 |
T. Miyake, T. Kosugi, S. Ishibashi, and K. Terakura, Electronic structure of novel superconductor Ca4Al2O6Fe2As2, J. Phys. Soc. Jpn. 79(12), 123713 (2010)
https://doi.org/10.1143/JPSJ.79.123713
|
51 |
O. Andersen and L. Boeri, On the multi-orbital band structure and itinerant magnetism of iron-based superconductors, Annalen der Physik, 1, 8 (2011)
|
52 |
Z. P. Yin, K. Haule, and G. Kotliar, Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides, Nat. Mater. 10(12), 932 (2011)
https://doi.org/10.1038/nmat3120
|
53 |
K. Suzuki, H. Usui, S. Iimura, Y. Sato, S. Matsuishi, H. Hosono, and K. Kuroki, Model of the electronic structure of electron-doped iron-based superconductors: Evidence for enhanced spin fluctuations by diagonal electron hopping, Phys. Rev. Lett. 113(2), 027002 (2014)
https://doi.org/10.1103/PhysRevLett.113.027002
|
54 |
D. Guterding, H. O. Jeschke, P. J. Hirschfeld, and R. Valenti, Unified picture of the doping dependence of superconducting transition temperatures in alkali metal/ammonia intercalated FeSe, Phys. Rev. B 91, 041112(R) (2015)
|
55 |
F. Ronning, N. Kurita, E. D. Bauer, B. L. Scott, T. Park, T. Klimczuk, R. Movshovich, and J. D. Thompson, The first order phase transition and superconductivity in BaNi2As2 single crystals, J. Phys.: Condens. Matter 20(34), 342203 (2008)
https://doi.org/10.1088/0953-8984/20/34/342203
|
56 |
A. S. Sefat, D. J. Singh, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, Renormalized behavior and proximity of BaCo2As2 to a magnetic quantum critical point, Phys. Rev. B 79(2), 024512 (2009)
https://doi.org/10.1103/PhysRevB.79.024512
|
57 |
Y. Singh, A. Ellern, and D. C. Johnston, Magnetic, transport, and thermal properties of single crystals of the layered arsenide BaMn2As2, Phys. Rev. B 79(9), 094519 (2009)
https://doi.org/10.1103/PhysRevB.79.094519
|
58 |
D. Gu, X. Dai, C. Le, L. Sun, Q. Wu, B. Saparov, J. Guo, P. Gao, S. Zhang, Y. Zhou, C. Zhang, S. Jin, L. Xiong, R. Li, Y. Li, X. Li, J. Liu, A. S. Sefat, J. Hu, and Z. Zhao, Robust antiferromagnetism preventing superconductivity in pressurized (Ba0.61K0.39)Mn2Bi2, Sci. Rep. 4, 7342 (2014)
https://doi.org/10.1038/srep07342
|
59 |
R. Yang, C. Le, L. Zhang, B. Xu, W. Zhang, K. Nadeem, H. Xiao, J. Hu, and X. Qiu, Formation of As-As bond and its effect on absence of superconductivity in collapsed tetragonal phase of Ca0.86Pr0.14Fe2As2: An optical spectroscopy study, Phys. Rev. B 91(22), 224507 (2015)
https://doi.org/10.1103/PhysRevB.91.224507
|
60 |
H. Sakakibara, K. Suzuki, H. Usui, K. Kuroki, R. Arita, D. J. Scalapino, and H. Aoki, Three-orbital study on the orbital distillation effect in the high Tc cuprates, Phys. Proc. 45, 13 (2013)
https://doi.org/10.1016/j.phpro.2013.04.040
|
61 |
I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx, Phys. Rev. Lett. 101(5), 057003 (2008)
https://doi.org/10.1103/PhysRevLett.101.057003
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|