Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (5) : 117404    https://doi.org/10.1007/s11467-016-0572-7
RESEARCH ARTICLE
Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity
Jiangping Hu1,2,3,*(),Jing Yuan1
1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2. Department of Physics, Purdue University, West Lafayette, IN 47907, USA
3. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
 Download: PDF(423 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A1gs-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high-Tc superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high-Tc superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: superconductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high-Tc superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high-Tc superconductivity.

Keywords iron-based superconductors      cuprates      unconventional superconductivity      high-temperature superconductors     
Corresponding Author(s): Jiangping Hu   
Online First Date: 19 April 2016    Issue Date: 08 June 2016
 Cite this article:   
Jiangping Hu,Jing Yuan. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity[J]. Front. Phys. , 2016, 11(5): 117404.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0572-7
https://academic.hep.com.cn/fop/EN/Y2016/V11/I5/117404
1 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based superconductor with LaO1-xFxFeAs (x= 0.05-0.12) with Tc = 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
https://doi.org/10.1021/ja800073m
2 N. Wang, H. Hosono, and P. Dai, Iron-Based Superconductors: Materials, Properties and Mechanisms, Pan Stanford Publishing PTE Ltd., 2012
3 D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides, Adv. Phys. 59(6), 803 (2010)
https://doi.org/10.1080/00018732.2010.513480
4 E. Dagotto, The unexpected properties of alkali metal iron selenide superconductors, Rev. Mod. Phys. 85(2), 849 (2013)
https://doi.org/10.1103/RevModPhys.85.849
5 P. Dai, J. Hu, and E. Dagotto, Magnetism and its microscopic origin in iron-based high-temperature superconductors, Nat. Phys. 8(10), 709 (2012)
https://doi.org/10.1038/nphys2438
6 P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys. 74(12), 124508 (2011)
https://doi.org/10.1088/0034-4885/74/12/124508
7 J. Hu, Iron-based superconductors as odd parity superconductors, Phys. Rev. X 3(3), 031004 (2013)
https://doi.org/10.1103/PhysRevX.3.031004
8 N. Hao and J. Hu, Odd parity pairing and nodeless antiphase s in iron-based superconductors, Phys. Rev. B 89(4), 045144 (2014)
https://doi.org/10.1103/PhysRevB.89.045144
9 C. C. Tsuei and J. R. Kirtley, Pairing symmetry in cuprate superconductors, Rev. Mod. Phys. 72(4), 969 (2000)
https://doi.org/10.1103/RevModPhys.72.969
10 D. J. Scalapino, The cuprate pairing mechanism, Science 284(5418), 1282 (1999)
https://doi.org/10.1126/science.284.5418.1282
11 P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind high-temperature superconducting cuprates: The “plain vanilla” version of RVB, J. Phys.: Condens. Matter 16(24), R755 (2004)
https://doi.org/10.1088/0953-8984/16/24/R02
12 Q. Si and E. Abrahams, Strong correlations and magnetic frustration in the high-Tc iron pnictides, Phys. Rev. Lett. 101(7), 076401 (2008)
https://doi.org/10.1103/PhysRevLett.101.076401
13 K. J. Seo, B. A. Bernevig, and J. P. Hu, Pairing symmetry in a two-orbital exchange coupling model of oxypnictides, Phys. Rev. Lett. 101(20), 206404 (2008)
https://doi.org/10.1103/PhysRevLett.101.206404
14 C. Fang, Y. L. Wu, R. Thomale, B. A. Bernevig, and J. Hu, Robustness of s-wave pairing in electron-overdoped A1-yFe2-xSe2, Phys. Rev. X 1(1), 011009 (2011)
https://doi.org/10.1103/PhysRevX.1.011009
15 P. Richard, T. Qian, and H. Ding, ARPES measurements of the superconducting gap of Fe-based superconductors and their implications to the pairing mechanism, arXiv: 1503.07269 (2015)
16 Q. Fan, W. H. Zhang, X. Liu, Y. J. Yan, M. Q. Ren, R. Peng, H. C. Xu, B. P. Xie, J. P. Hu, T. Zhang, and D. L. Feng, Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunneling microscopy, arXiv: 1504.02185 (2015)
17 X. H. Niu, R. Peng, H. C. Xu, Y. J. Yan, J. Jiang, D. F. Xu, T. L. Yu, Q. Song, Z. C. Huang, Y. X. Wang, B. P. Xie, X. F. Lu, N. Z. Wang, X. H. Chen, Z. Sun, and D. L. Feng, Surface electronic structure and isotropic superconducting gap in Li0.8Fe0.2OHFeSe, arXiv: 1506.02825 (2015)
18 L. Zhao, A. Liang, D. Yuan, Y. Hu, D. Liu, J. Huang, S. He, B. Shen, Y. Xu, X. Liu, L. Yu, G. Liu, H. Zhou, Yulong Huang, X. Dong, F. Zhou, Z. Zhao, C. Chen, Z. Xu, and X. J. Zhou, Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/ SrTiO3 films, arXiv: 1505.6361 (2015)
19 P. A. Lee and X. G. Wen, Spin-triplet p-wave pairing in a three-orbital model for iron pnictide superconductors, Phys. Rev. B 78(14), 144517 (2008)
https://doi.org/10.1103/PhysRevB.78.144517
20 V. Cvetkovic and O. Vafek, Space group symmetry, spin-orbit coupling, and the low-energy effective hamiltonian for iron-based superconductors, Phys. Rev. B 88(13), 134510 (2013)
https://doi.org/10.1103/PhysRevB.88.134510
21 Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater. 10(4), 273 (2011)
https://doi.org/10.1038/nmat2981
22 Q. Y. Wang, Z. Li, W. H. Zhang, Z. C. Zhang, J. S. Zhang, W. Li, H. Ding, Y. B. Ou, P. Deng, K. Chang, J. Wen, C. L. Song, K. He, J. F. Jia, S. H. Ji, Y. Y. Wang, L. L. Wang, X. Chen, X. C. Ma, and Q. K. Xue, Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3, Chin. Phys. Lett. 29(3), 037402 (2012)
https://doi.org/10.1088/0256-307X/29/3/037402
23 S. L. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y. B. Ou, Q. Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films, Nat. Mater. 12(7), 605 (2013)
https://doi.org/10.1038/nmat3648
24 S. Y. Tan, Y. Zhang, M. Xia, Z. Ye, F. Chen, X. Xie, R. Peng, D. Xu, Q. Fan, H. Xu, J. Jiang, T. Zhang, X. Lai, T. Xiang, J. Hu, B. Xie, and D. Feng, Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films, Nat. Mater. 12(7), 634 (2013)
https://doi.org/10.1038/nmat3654
25 M. Xu, Q. Q. Ge, R. Peng, Z. R. Ye, J. Jiang, F. Chen, X. P. Shen, B. P. Xie, Y. Zhang, A. F. Wang, X. F. Wang, X. H. Chen, and D. L. Feng, Evidence for an s-wave superconducting gap in KxFe2-ySe2 from angle-resolved photoemission, Phys. Rev. B 85(22), 220504 (2012)
https://doi.org/10.1103/PhysRevB.85.220504
26 X. Liu, L. Zhao, S. He, J. He, D. Liu, D. Mou, B. Shen, Y. Hu, J. Huang, and X. J. Zhou, Electronic structure and superconductivity of FeSe-related superconductors, J. Phys.: Condens. Matter 27(18), 183201 (2015)
https://doi.org/10.1088/0953-8984/27/18/183201
27 I. I. Mazin, Symmetry analysis of possible superconducting states in KxFe2Se2 superconductors, Phys. Rev. B 84(2), 024529 (2011)
https://doi.org/10.1103/PhysRevB.84.024529
28 F. F. Tafti, A. Ouellet, A. Juneau-Fecteau, S. Faucher, M. Lapointe-Major, N. Doiron-Leyraud, A. F. Wang, X. G. Luo, X. H. Chen, and L. Taillefer, Universal V-shaped temperature-pressure phase diagram in the iron-based superconductors KFe2As2, RbFe2As2, and CsFe2As2, Phys. Rev. B 91(5), 054511 (2015)
https://doi.org/10.1103/PhysRevB.91.054511
29 Y. Ota, K. Okazaki, Y. Kotani, T. Shimojima, W. Malaeb, S. Watanabe, C.T. Chen, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Saito, H. Fukazawa, Y. Kohori, and S. Shin, Evidence for excluding the possibility of d-wave superconducting-gap symmetry in Ba-doped KFe2As2, Phys. Rev. B 89(8), 081103 (2014)
https://doi.org/10.1103/PhysRevB.89.081103
30 K. Okazaki, Y. Ota, Y. Kotani, W. Malaeb, Y. Ishida, T. Shimojima, T. Kiss, S. Watanabe, C. T. Chen, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Saito, H. Fukazawa, Y. Kohori, K. Hashimoto, T. Shibauchi, Y. Matsuda, H. Ikeda, H. Miyahara, R. Arita, A. Chainani, and S. Shin, Octet-line node structure of superconducting order parameter in KFe2As2, Science 337(6100), 1314 (2012)
https://doi.org/10.1126/science.1222793
31 Y. Zhang, Z. R. Ye, Q. Q. Ge, F. Chen, J. Jiang, M. Xu, B. P. Xie, and D. L. Feng, Nodal superconducting-gap structure in ferropnictide superconductor BaFe2(As0.7P0.3)2, Nat. Phys. 8(5), 371 (2012)
https://doi.org/10.1038/nphys2248
32 X. Qiu, S. Y. Zhou, H. Zhang, B. Y. Pan, X. C. Hong, Y. F. Dai, M. J. Eom, J. S. Kim, Z. R. Ye, Y. Zhang, D. L. Feng, and S. Y. Li, Robust nodal superconductivity induced by isovalent doping in Ba(Fe1-xRux)2As2 and BaFe2(As1-xPx)2, Phys. Rev. X 2(1), 011010 (2012)
https://doi.org/10.1103/PhysRevX.2.011010
33 N. Bickers, D. J. Scalapino, and R. T. Scalettar, Cdw and sdw mediated pairing interactions, Int. J. Mod. Phys. B 01(03n04), 687 (1987)
34 M. Inui, S. Doniach, P. Hirschfeld, and A. Ruckenstein, Coexistence of antiferromagnetism and superconductivity in a mean-field theory of high-Tc superconductors, Phys. Rev. B 37(4), 2320 (1988)
https://doi.org/10.1103/PhysRevB.37.2320
35 C. Gros, D. Poilblanc, T. M. Rice, and F. C. Zhang, Superconductivity in correlated wavefunctions, Physica C153–155, 543 (1988)
https://doi.org/10.1016/0921-4534(88)90715-0
36 G. Kotliar and J. Liu, Superexchange mechanism and d-wave superconductivity, Phys. Rev. B 38(7), 5142 (1988)
https://doi.org/10.1103/PhysRevB.38.5142
37 W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schnhammer, Functional renormalization group approach to correlated fermion systems, Rev. Mod. Phys. 84(1), 299 (2012)
https://doi.org/10.1103/RevModPhys.84.299
38 F. C. Zhang and T. M. Rice, Effective hamiltonian for the superconducting Cu oxides, Phys. Rev. B 37(7), 3759 (1988)
https://doi.org/10.1103/PhysRevB.37.3759
39 S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides, New J. Phys. 11(2), 025016 (2009)
https://doi.org/10.1088/1367-2630/11/2/025016
40 S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and A. V. Chubukov, Evolution of the superconducting state of Fe-based compounds with doping, Phys. Rev. Lett. 107(14), 147002 (2011)
https://doi.org/10.1103/PhysRevLett.107.147002
41 F. Wang, H. Zhai, and D. H. Lee, Nodes in the gap function of LaFePo, the gap function of the Fe(Se,Te) systems, and the STM signature of the s pairing, Phys. Rev. B 81(18), 184512 (2010)
https://doi.org/10.1103/PhysRevB.81.184512
42 T. A. Maier, S. Graser, P. J. Hirschfeld, and D. J. Scalapino, d-wave pairing from spin fluctuations in the KxFe2-ySe2 superconductors, Phys. Rev. B 83(10), 100515 (2011)
https://doi.org/10.1103/PhysRevB.83.100515
43 R. Thomale, C. Platt, W. Hanke, J. Hu, and B. A. Bernevig, Exotic d-wave superconductivity in strongly hole doped KxBa1-xFe2As2, Phys. Rev. Lett. 107(11), 117001 (2011)
https://doi.org/10.1103/PhysRevLett.107.117001
44 J. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Sci. Rep. 2, 381 (2012)
https://doi.org/10.1038/srep00381
45 J. S. Davis and D. H. Lee, Concepts relating magnetic interactions, interwined electronic orders, and strongly correlated superconductivity, Proc. Natl. Acad. Sci. USA 110(44), 17623 (2013)
https://doi.org/10.1073/pnas.1316512110
46 J. Hu, B. Xu, W. Liu, N. N. Hao, and Y. Wang, Unified minimum effective model of magnetic properties of iron-based superconductors, Phys. Rev. B 85(14), 144403 (2012)
https://doi.org/10.1103/PhysRevB.85.144403
47 F. Ma, W. Ji, J. Hu, Z.-Y. Lu, and T. Xiang, First-principles calculations of the electronic structure of tetragonal alpha-FeTe and alpha-FeSe crystals: Evidence for a bicollinear antiferromagnetic order, Phys. Rev. Lett. 102, 177003 (2009)
https://doi.org/10.1103/PhysRevLett.102.177003
48 A. L. Wysocki, K. D. Belashchenko, and V. P. Antropov, Consistent model of magnetism in ferropnictides, Nat. Phys. 7(6), 485 (2011)
https://doi.org/10.1038/nphys1933
49 J. K. Glasbrenner, I. I. Mazin, H. Jeschke, P. J. Hirschfeld, and R. Valent, Effect of magnetic frustration on nematicity and superconductivity in Fe chalcogenides, arXiv: 1501.04946 (2015)
50 T. Miyake, T. Kosugi, S. Ishibashi, and K. Terakura, Electronic structure of novel superconductor Ca4Al2O6Fe2As2, J. Phys. Soc. Jpn. 79(12), 123713 (2010)
https://doi.org/10.1143/JPSJ.79.123713
51 O. Andersen and L. Boeri, On the multi-orbital band structure and itinerant magnetism of iron-based superconductors, Annalen der Physik, 1, 8 (2011)
52 Z. P. Yin, K. Haule, and G. Kotliar, Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides, Nat. Mater. 10(12), 932 (2011)
https://doi.org/10.1038/nmat3120
53 K. Suzuki, H. Usui, S. Iimura, Y. Sato, S. Matsuishi, H. Hosono, and K. Kuroki, Model of the electronic structure of electron-doped iron-based superconductors: Evidence for enhanced spin fluctuations by diagonal electron hopping, Phys. Rev. Lett. 113(2), 027002 (2014)
https://doi.org/10.1103/PhysRevLett.113.027002
54 D. Guterding, H. O. Jeschke, P. J. Hirschfeld, and R. Valenti, Unified picture of the doping dependence of superconducting transition temperatures in alkali metal/ammonia intercalated FeSe, Phys. Rev. B 91, 041112(R) (2015)
55 F. Ronning, N. Kurita, E. D. Bauer, B. L. Scott, T. Park, T. Klimczuk, R. Movshovich, and J. D. Thompson, The first order phase transition and superconductivity in BaNi2As2 single crystals, J. Phys.: Condens. Matter 20(34), 342203 (2008)
https://doi.org/10.1088/0953-8984/20/34/342203
56 A. S. Sefat, D. J. Singh, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, Renormalized behavior and proximity of BaCo2As2 to a magnetic quantum critical point, Phys. Rev. B 79(2), 024512 (2009)
https://doi.org/10.1103/PhysRevB.79.024512
57 Y. Singh, A. Ellern, and D. C. Johnston, Magnetic, transport, and thermal properties of single crystals of the layered arsenide BaMn2As2, Phys. Rev. B 79(9), 094519 (2009)
https://doi.org/10.1103/PhysRevB.79.094519
58 D. Gu, X. Dai, C. Le, L. Sun, Q. Wu, B. Saparov, J. Guo, P. Gao, S. Zhang, Y. Zhou, C. Zhang, S. Jin, L. Xiong, R. Li, Y. Li, X. Li, J. Liu, A. S. Sefat, J. Hu, and Z. Zhao, Robust antiferromagnetism preventing superconductivity in pressurized (Ba0.61K0.39)Mn2Bi2, Sci. Rep. 4, 7342 (2014)
https://doi.org/10.1038/srep07342
59 R. Yang, C. Le, L. Zhang, B. Xu, W. Zhang, K. Nadeem, H. Xiao, J. Hu, and X. Qiu, Formation of As-As bond and its effect on absence of superconductivity in collapsed tetragonal phase of Ca0.86Pr0.14Fe2As2: An optical spectroscopy study, Phys. Rev. B 91(22), 224507 (2015)
https://doi.org/10.1103/PhysRevB.91.224507
60 H. Sakakibara, K. Suzuki, H. Usui, K. Kuroki, R. Arita, D. J. Scalapino, and H. Aoki, Three-orbital study on the orbital distillation effect in the high Tc cuprates, Phys. Proc. 45, 13 (2013)
https://doi.org/10.1016/j.phpro.2013.04.040
61 I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx, Phys. Rev. Lett. 101(5), 057003 (2008)
https://doi.org/10.1103/PhysRevLett.101.057003
[1] Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu. Theoretical studies of superconductivity in doped BaCoSO[J]. Front. Phys. , 2018, 13(3): 137502-.
[2] A. P. Durajski. Anisotropic evolution of energy gap in Bi2212 superconductor[J]. Front. Phys. , 2016, 11(5): 117408-.
[3] Zheng-Yu Weng. Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity[J]. Front. Phys. , 2011, 6(4): 370-378.
[4] Fa Wang, Dung-Hai Lee. A reflection on the contrast between the Cooper pairing in iron-based and conventional superconductors[J]. Front. Phys. , 2011, 6(4): 350-356.
[5] Jing-lei Zhang, Lin Jiao, Ye Chen, Hui-qiu Yuan. Universal behavior of the upper critical field in iron-based superconductors[J]. Front. Phys. , 2011, 6(4): 463-473.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed