Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (5) : 117408    https://doi.org/10.1007/s11467-016-0595-0
RESEARCH ARTICLE
Anisotropic evolution of energy gap in Bi2212 superconductor
A. P. Durajski()
Institute of Physics, Częstochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Częstochowa, Poland
 Download: PDF(11465 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a systematic analysis of the energy gap in underdoped Bi2212 superconductor as a function of temperature and hole doping level. Within the framework of the theoretical model containing the electron-phonon and electron-electron-phonon pairing mechanism, we reproduced the measurement results of modern ARPES experiments with very high accuracy. We showed that the energy-gap amplitude is very weakly dependent on the temperature but clearly dependent on the level of doping. The evidence for a non-zero energy gap above the critical temperature, referred to as a pseudogap, was also obtained.

Keywords high-temperature superconductors      anisotropy      energy gap      Bi2212     
Corresponding Author(s): A. P. Durajski   
Issue Date: 28 June 2016
 Cite this article:   
A. P. Durajski. Anisotropic evolution of energy gap in Bi2212 superconductor[J]. Front. Phys. , 2016, 11(5): 117408.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0595-0
https://academic.hep.com.cn/fop/EN/Y2016/V11/I5/117408
1 T. Timusk and B. Statt, The pseudogap in hightemperature superconductors: An experimental survey, Rep. Prog. Phys. 62(1), 61 (1999)
https://doi.org/10.1088/0034-4885/62/1/002
2 Q. Chen and J. Wang, Pseudogap phenomena in ultracold atomic Fermi gases, Front. Phys. 9(5), 539 (2014)
https://doi.org/10.1007/s11467-014-0448-7
3 L. Li, Y. Wang, S. Komiya, S. Ono, Y. Ando, G. D. Gu, and N. P. Ong, Diamagnetism and Cooper pairing above Tc in cuprates, Phys. Rev. B 81(5), 054510 (2010)
https://doi.org/10.1103/PhysRevB.81.054510
4 J. Tahir-Kheli and W. A. Goddard III, Origin of the pseudogap in high-temperature cuprate superconductors, J. Phys. Chem. Lett. 2, 2326 (2011)
https://doi.org/10.1021/jz200916t
5 C. V. Parker, P. Aynajian, E. H. da Silva Neto, A. Pushp, S. Ono, J. Wen, Z. Xu, G. Gu, and A. Yazdani, Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x, Nature 468(7324), 677 (2010)
https://doi.org/10.1038/nature09597
6 P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006)
https://doi.org/10.1103/RevModPhys.78.17
7 G. Zhao, The pairing mechanism of high-temperature superconductivity: Experimental constraints, Phys. Scr. 83(3), 038302 (2011)
https://doi.org/10.1088/0031-8949/83/03/038302
8 B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides, Nature 518(7538), 179 (2015)
https://doi.org/10.1038/nature14165
9 E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Theory of intertwined orders in high temperature superconductors, Rev. Mod. Phys. 87(2), 457 (2015)
https://doi.org/10.1103/RevModPhys.87.457
10 R. Szcześniak, The isotope coefficient of the pseudogap in high-superconductors, Phys. Lett. A 336(4–5), 402 (2005)
https://doi.org/10.1016/j.physleta.2004.12.070
11 R. Szcześniak, The selected thermodynamic properties of the strong-coupled superconductors in the van Hove scenario, Solid State Commun. 138(7), 347 (2006)
https://doi.org/10.1016/j.ssc.2006.03.012
12 W. Kumala and R. Gonczarek, Solutions of the energy gap equation for D-wave paired systems, Phys. Status Solidi B 242(5), 1075 (2005)
https://doi.org/10.1002/pssb.200402134
13 M. Gładysiewicz-Kudrawiec, R. Gonczarek, and M. Krzyzosiak, Thermodynamic properties of a high-Tc superconductor in the extended Van Hove Scenario, Physica B359–361, 572 (2005)
https://doi.org/10.1016/j.physb.2005.01.150
14 M. Krzyzosiak, R. Gonczarek, A. Gonczarek, and L. Jacak, Applications of the confromal transformation method in studies of composed superconducting systems, Front. Phys. 11, 117407 (2016)
https://doi.org/10.1007/s11467-016-0579-0
15 H. Y. Choi, C. M. Varma, and X. Zhou, Superconductivity in the cuprates: Deduction of mechanism for d-wave pairing through analysis of ARPES, Front. Phys. 6(4), 440 (2012)
https://doi.org/10.1007/s11467-011-0231-y
16 P. Tarasewicz, The intra- and interband phonon-electron potentials in a two-band model of interacting lattice fermions, J. Supercond. Nov. Magn. 28(8), 2307 (2015)
https://doi.org/10.1007/s10948-015-3039-0
17 P. Tarasewicz, Fermion quartets in a two-band model of superconductivity, Physica C 506, 12 (2014)
https://doi.org/10.1016/j.physc.2014.08.002
18 R. Szcześniak, Pairing mechanism for the high-Tc superconductivity: Symmetries and thermodynamic properties, PLoS ONE 7(4), e31873 (2012)
https://doi.org/10.1371/journal.pone.0031873
19 R. Szcześniak and A. P. Durajski, Anisotropy of the gap parameter in the hole-doped cuprates, Supercond. Sci. Technol. 27(12), 125004 (2014)
https://doi.org/10.1088/0953-2048/27/12/125004
20 R. Szcześniak and A. P. Durajski, On the ratio of the energy gap amplitude to the critical temperature for cuprates, Acta Phys. Pol. A 126(4A), A92 (2014)
https://doi.org/10.12693/APhysPolA.126.A-92
21 R. Szcześniak, M. W. Jarosik, and A. M. Duda, The correlation between the energy gap and the pseudogap temperature in cuprates: The YCBCZO and LSHCO Case, Adv. Condens. Matter Phys. 2015, 969564 (2015)
https://doi.org/10.1155/2015/969564
22 R. Szcześniak, A. P. Durajski, and A. M. Duda, Analysis of the high-temperature superconducting state in cuprates: The Eliashberg approach, arXiv: 1503.06932 (2015)
23 I. M. Vishik, W. S. Lee, R. H. He, M. Hashimoto, Z. Hussain, T. P. Devereaux, and Z. X. Shen, ARPES studies of cuprateFermiology: superconductivity, pseudogap and quasiparticle dynamics, New J. Phys. 12(10), 105008 (2010)
https://doi.org/10.1088/1367-2630/12/10/105008
24 I. M. Vishik, M. Hashimoto, R. H. He, W. S. Lee, F. Schmitt, D. Lu, R. G. Moore, C. Zhang, W. Meevasana, T. Sasagawa, S. Uchida, K. Fujita, S. Ishida, M. Ishikado, Y. Yoshida, H. Eisaki, Z. Hussain, T. P. Devereaux, and Z. X. Shen, Phase competition in trisected superconducting dome, Proc. Natl. Acad. Sci. USA 109(45), 18332 (2012)
https://doi.org/10.1073/pnas.1209471109
25 T. Tohyama and S. Maekawa, Angle-resolved photoemission in high Tc cuprates from theoretical viewpoints, Supercond. Sci. Technol. 13(4), R17 (2000)
https://doi.org/10.1088/0953-2048/13/4/201
26 C. Kim, P. J. White, Z. X. Shen, T. Tohyama, Y. Shibata, S. Maekawa, B. O. Wells, Y. J. Kim, R. J. Birgeneau, and M. A. Kastner, Systematics of the photoemission spectral function of cuprates: Insulators and hole- and electron-doped superconductors, Phys. Rev. Lett. 80(19), 4245 (1998)
https://doi.org/10.1103/PhysRevLett.80.4245
27 H. Fröhlich, On the theory of superconductivity: The one-dimensional case, Proc. R. Soc. Lond. A Math. Phys. Sci. 223(1154), 296 (1954)
https://doi.org/10.1098/rspa.1954.0116
28 R. Szcześniak and A. P. Durajski, The energy gap in the (Hg1xSnx)Ba2Ca2Cu3O8+y superconductor, J. Supercond. Nov. Magn. 27(6), 1363 (2014)
https://doi.org/10.1007/s10948-013-2472-1
29 R. M. Dipasupil, M. Oda, N. Momono, and M. Ido, Energy gap evolution in the tunneling spectra of Bi2Sr2CaCu2O8+δ, J. Phys. Soc. Jpn. 71(6), 1535 (2002)
https://doi.org/10.1143/JPSJ.71.1535
30 N. Miyakawa, J. F. Zasadzinski, L. Ozyuzer, P. Guptasarma, D. G. Hinks, C. Kendziora, and K. E. Gray, Predominantly superconducting origin of large energy gaps in underdoped Bi2Sr2CaCu2O8+δ from tunneling spectroscopy, Phys. Rev. Lett. 83(5), 1018 (1999)
https://doi.org/10.1103/PhysRevLett.83.1018
31 L. Ozyuzer, J. Zasadzinski, K. Gray, D. Hinks, and N. Miyakawa, Probing the phase diagram of Bi2Sr2CaCu2O8+δ with tunneling spectroscopy, IEEE Trans. Appl. Supercond. 13(2), 893 (2003)
https://doi.org/10.1109/TASC.2003.814072
32 C. Renner, B. Revaz, J. Y. Genoud, K. Kadowaki, and O. Fischer, Pseudogap precursor of the superconducting gap in under- and overdoped Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett. 80(1), 149 (1998)
https://doi.org/10.1103/PhysRevLett.80.149
33 M. Oda, K. Hoya, R. Kubota, C. Manabe, N. Momono, T. Nakano, and M. Ido, Strong pairing interactions in the underdoped region of Bi2Sr2CaCu2O8+σ, Physica C 281(2–3), 135 (1997)
https://doi.org/10.1016/S0921-4534(97)00505-4
34 H. Ding, J. Campuzano, M. Norman, M. Randeria, T. Yokoya, T. Takahashi, T. Takeuchi, T. Mochiku, K. Kadowaki, P. Guptasarma, and D. G. Hinks, ARPES study of the superconducting gap and pseudogap in Bi2Sr2CaCu2O8+x, J. Phys. Chem. Solids 59(10–12), 1888 (1998)
https://doi.org/10.1016/S0022-3697(98)00136-X
35 H. Raffy, V. Toma, C. Murrills, and Z. Z. Li, c-axis resistivity of Bi2Sr2CaCu2Oy thin films at various oxygen doping: Phase diagram and scaling law, Physica C460–462, 851 (2007)
36 M. Hashimoto, I. M. Vishik, R. H. He, T. P. Devereaux, and Z. X. Shen, Energy gaps in high-transitiontemperature cuprate superconductors, Nat. Phys. 10(7), 483(2014)
https://doi.org/10.1038/nphys3009
37 J. Zhao, U. Chatterjee, D. Ai, D. G. Hinks, H. Zheng, G. D. Gu, J. P. Castellan, S. Rosenkranz, H. Claus, M. R. Norman, M. Randeria, and J. C. Campuzano, Universal features in the photoemission spectroscopy of high-temperature superconductors, Proc. Natl. Acad. Sci. USA 110(44), 17774 (2013)
https://doi.org/10.1073/pnas.1302932110
38 S. Hüfner, M. A. Hossain, A. Damascelli, and G. A. Sawatzky, Two gaps make a high-temperature superconductor? Rep. Prog. Phys. 71(6), 062501 (2008)
https://doi.org/10.1088/0034-4885/71/6/062501
39 R. Szcześniak and A. P. Durajski, Description of hightemperature superconducting state in BSLCO compound, J. Supercond. Nov. Magn. 28(1), 19 (2015)
https://doi.org/10.1007/s10948-014-2836-1
[1] Ming-Xiu Sui, Zi-Bo Zhang, Xiao-Dan Chi, Jia-Yu Zhang, Yong Hu. Dense skyrmion crystal stabilized through interfacial exchange coupling: Role of in-plane anisotropy[J]. Front. Phys. , 2021, 16(2): 23501-.
[2] Lin Fa, Jiaojiao Tang, Qi Zhang, Minjin Zhang, Yandong Zhang, Meng Liang, Meishan Zhao. Reflection and refraction of elastic wave at VTI-TTI media interface[J]. Front. Phys. , 2020, 15(2): 22601-.
[3] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[4] Zhi-Qiang Wang, Tie-Yu Lü, Hui-Qiong Wang, Yuan Ping Feng, Jin-Cheng Zheng. Review of borophene and its potential applications[J]. Front. Phys. , 2019, 14(3): 33403-.
[5] Jun-Chi Wu, Xu Peng, Yu-Qiao Guo, Hao-Dong Zhou, Ji-Yin Zhao, Ke-Qin Ruan, Wang-Sheng Chu, Changzheng Wu. Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy[J]. Front. Phys. , 2018, 13(3): 138110-.
[6] V. Zhukova, J. M. Blanco, A. Chizhik, M. Ipatov, A. Zhukov. AC-current-induced magnetization switching in amorphous microwires[J]. Front. Phys. , 2018, 13(2): 137501-.
[7] Bing-Lin Young. A survey of dark matter and related topics in cosmology[J]. Front. Phys. , 2017, 12(2): 121201-.
[8] Jiangping Hu,Jing Yuan. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity[J]. Front. Phys. , 2016, 11(5): 117404-.
[9] Gui-Hua Chen, Hong-Cheng Wang, Zi-Fa Chen. Discrete vortices on anisotropic lattices[J]. Front. Phys. , 2015, 10(4): 104206-.
[10] Jia-Sheng Huang, Xun-Da Jiang, Huai-Yu Chen, Zhi-Wei Fan, Wei Pang, Yong-Yao Li. Quadrupolar matter-wave soliton in two-dimensional free space[J]. Front. Phys. , 2015, 10(4): 100507-.
[11] Fang WU (吴芳), Richard TJORNHAMMAR, Er-jun KAN (阚二军), Zhen-yu LI (李震宇). A first-principles study on the electronic structure of one-dimensional [TM(Bz)] polymer (TM= Y, Zr, Nb, Mo, and Tc)[J]. Front Phys Chin, 2009, 4(3): 403-407.
[12] CHEN Xiao-jun, CHEN Yong-qiang, XU Jian-pu, XU Jian-jun. Steady needle growth with 3-D anisotropic surface tension[J]. Front. Phys. , 2008, 3(4): 418-435.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed