Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (3) : 137502    https://doi.org/10.1007/s11467-018-0745-7
RESEARCH ARTICLE
Theoretical studies of superconductivity in doped BaCoSO
Shengshan Qin1,2, Yinxiang Li1, Qiang Zhang1, Congcong Le1,3, Jiangping Hu1,3,4()
1. Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2. University of Chinese Academy of Science, Beijing 100049, China
3. Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4. Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
 Download: PDF(2931 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three t2g orbitals have very different superconducting form factors in momentum space. In particular, th intra-orbital pairing of the dx2y2 orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.

Keywords unconventional superconductivity      pairing symmetry     
Corresponding Author(s): Jiangping Hu   
Issue Date: 07 March 2018
 Cite this article:   
Shengshan Qin,Yinxiang Li,Qiang Zhang, et al. Theoretical studies of superconductivity in doped BaCoSO[J]. Front. Phys. , 2018, 13(3): 137502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0745-7
https://academic.hep.com.cn/fop/EN/Y2018/V13/I3/137502
1 J. G. Bednorz and K. A. Muller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B Condens. Matter 64(2), 189 (1986)
https://doi.org/10.1007/BF01303701
2 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1−xFx]FeAs (x= 0.05–0.12) with Tc= 26 K, JACS 130(11), 3296 (2008)
3 A. Damascelli, Z. Hussain, and Z. X. Shen, Angleresolved photoemission studies of the cuprate supercon-ductors, Rev. Mod. Phys. 75(2), 473 (2003)
https://doi.org/10.1103/RevModPhys.75.473
4 P. C. Dai, Antiferromagnetic order and spin dynamics in iron-based superconductors, Rev. Mod. Phys. 87(3), 855 (2015)
https://doi.org/10.1103/RevModPhys.87.855
5 O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of high-temperature superconductors, Rev. Mod. Phys. 79(1), 353 (2007)
https://doi.org/10.1103/RevModPhys.79.353
6 J. P. Hu, Identifying the genes of unconventional high temperature superconductors, Sci. Bull. 61(7), 561 (2016)
https://doi.org/10.1007/s11434-016-1037-7
7 J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Sci. Rep. 2(1), 381 (2012)
https://doi.org/10.1038/srep00381
8 J. P. Hu, C. C. Le, and X. X. Wu, Predicting unconventional high-temperature superconductors in trigonal bipyramidal coordinations, Phys. Rev. X 5(4), 041012 (2015)
https://doi.org/10.1103/PhysRevX.5.041012
9 J. P. Hu and C. C. Le, A possible new family of unconventional high temperature superconductors, Sci. Bull. 62(3), 212 (2017)
https://doi.org/10.1016/j.scib.2016.12.014
10 E. J. Salter, J. N. Blandy, and S. J. Clarke, Crystal and magnetic structures of the oxide sulfides CaCoSO and BaCoSO, Inorg. Chem. 55(4), 1697 (2016)
https://doi.org/10.1021/acs.inorgchem.5b02615
11 M. Valldor, U. K. Rossler, Y. Prots, C. Y. Kuo, J. C. Chiang, Z. Hu, T. W. Pi, R. Kniep, and L. H. Tjeng, Synthesis and characterization of Ba[CoSO]: Magnetic complexity in the presence of chalcogen ordering, Chemistry 21(30), 10821 (2015)
https://doi.org/10.1002/chem.201501024
12 C. C. Le, S. S. Qin, and J. P. Hu, Electronic physics and possible superconductivity in layered orthorhombic cobalt oxychalcogenides, arXiv: 1612.03470 (2016)
13 K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx, Phys. Rev. Lett. 101(8), 087004 (2008)
https://doi.org/10.1103/PhysRevLett.101.087004
14 D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides,Adv. Phys. 59(6), 803 (2010)
https://doi.org/10.1080/00018732.2010.513480
15 I. I. Mazin, Superconductivity gets an iron boost, Nature 464(7286), 183 (2010)
https://doi.org/10.1038/nature08914
16 P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys. 74(12), 124508 (2011)
https://doi.org/10.1088/0034-4885/74/12/124508
17 G. Kotliar and J. L. Liu, Superexchange mechanism and d-wave superconductivity, Phys. Rev. B 38(7), 5142 (1988)
https://doi.org/10.1103/PhysRevB.38.5142
18 K. Seo, B. A. Bernevig, and J. P. Hu, Pairing symmetry in a two-orbital exchange coupling model of oxypnictides, Phys. Rev. Lett. 101(20), 206404 (2008)
https://doi.org/10.1103/PhysRevLett.101.206404
19 A. F. Kemper, T. A. Maier, S. Graser, H. P. Cheng, P. J. Hirschfeld, and D. J. Scalapino, Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides, New J. Phys. 12(7), 073030 (2010)
https://doi.org/10.1088/1367-2630/12/7/073030
20 X. X. Wu, J. Yuan, Y. Liang, H. Fan, and J. P. Hu, g-wave pairing in BiS2 superconductors, EPL 108(2), 27006 (2014)
https://doi.org/10.1209/0295-5075/108/27006
21 D. J. Singh and M. H. Du, Density functional study of LaFeAsO1-xFx: A low carrier density superconductor near itinerant magnetism, Phys. Rev. Lett. 100, 237003 (2008)
https://doi.org/10.1103/PhysRevLett.100.237003
22 C. Cao, P. J. Hirschfeld, and H. P. Cheng, Proximity of antiferromagnetism and superconductivity in LaFeAsO1−xFx: Effective Hamiltonian from ab initio studies,Phys. Rev. B 77(22), 220506 (2008)
https://doi.org/10.1103/PhysRevB.77.220506
23 T. Qian, X. P. Wang, W. C. Jin, P. Zhang, P. Richard, G. Xu, X.Dai, Z. Fang, J. G. Guo, X. L. Chen, and H. Ding, Absence of a holelike Fermi surface for the ironbased K0.8Fe1.7Se2 superconductor revealed by angleresolved photoemission spectroscopy, Phys. Rev. Lett. 106(18), 187001 (2011)
https://doi.org/10.1103/PhysRevLett.106.187001
24 Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A= K, Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater. 10(4), 273 (2011)
https://doi.org/10.1038/nmat2981
25 S. L. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y. B. Ou, Q. Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, Phase diagram and electronic indication of hightemperature superconductivity at 65 K in single-layer FeSe films, Nat. Mater. 12(7), 605 (2013)
https://doi.org/10.1038/nmat3648
26 W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schonhammer, Functional renormalization group approach to correlated fermion systems, Rev. Mod. Phys. 84(1), 299 (2012)
https://doi.org/10.1103/RevModPhys.84.299
27 R. Thomale, C. Platt, J. P. Hu, C. Honerkamp, and B. A. Bernevig, Functional renormalization-group study of the doping dependence of pairing symmetry in the iron pnictide superconductors, Phys. Rev. B 80(18), 180505 (2009)
https://doi.org/10.1103/PhysRevB.80.180505
28 F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D. H. Lee, Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAsbased high-temperature superconductor, Phys. Rev. Lett. 102(4), 047005 (2009)
https://doi.org/10.1103/PhysRevLett.102.047005
[1] Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2[J]. Front. Phys. , 2019, 14(1): 13501-.
[2] Mateusz Krzyzosiak, Ryszard Gonczarek, Adam Gonczarek, Lucjan Jacak. Applications of the conformal transformation method in studies of composed superconducting systems[J]. Front. Phys. , 2016, 11(6): 117407-.
[3] Jiangping Hu,Jing Yuan. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity[J]. Front. Phys. , 2016, 11(5): 117404-.
[4] Yi Liang, Xianxin Wu, Wei-Feng Tsai, Jiangping Hu. Pairing symmetry in layered BiS2 compounds driven by electron–electron correlation[J]. Front. Phys. , 2014, 9(2): 194-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed