|
|
Analytical assessment of some characteristic ratios for s-wave superconductors |
Ryszard Gonczarek1, Mateusz Krzyzosiak2( ), Adam Gonczarek3, Lucjan Jacak1 |
1. Faculty of Fundamental Problems of Technology, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland 2. University of Michigan–Shanghai Jiao Tong University Joint Institute, 800 Dongchuan Road, Shanghai 200240, China 3. Faculty of Computer Science and Management, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland |
|
|
Abstract We evaluate some thermodynamic quantities and characteristic ratios that describe low- and hightemperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range T≤Tc are discussed using the method of successive approximations. The equation for the ratio R1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low-Tc superconductors. The prospect of application of the presented model in studies of high-Tc superconductors and other superconducting systems of the new generation is also discussed.
|
Keywords
superconductivity
characteristic ratios
fluctuation of the DoS
|
Corresponding Author(s):
Mateusz Krzyzosiak
|
Issue Date: 24 January 2018
|
|
1 |
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1−xFx]FeAs (x= 0.05–0.12) with Tc= 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
https://doi.org/10.1021/ja800073m
|
2 |
H. Hosono and K. Kuroki, Iron-based superconductors: Current status of materials and pairing mechanism, Physica C 514, 399 (2015)
https://doi.org/10.1016/j.physc.2015.02.020
|
3 |
M. Krzyzosiak, R. Gonczarek, A. Gonczarek, and L. Jacak, Conformal Transformation Method in Studies of High-Tc Superconductors – Beyond the Van Hove Scenario in: Superconductivity and Superconducting Wires, Eds. D. Matteri and L. Futino, Nova Science Publishers, Hauppage, New York, 2010, Ch. 5
|
4 |
R. Gonczarek and M. Krzyzosiak, Model of Superconductivity in the Singular Fermi Liquid in: Progress in Superconductivity Research, Ed. O. A. Chang, Nova Science Publishers, Hauppage, New York, 2008, Ch. 6
|
5 |
R. Gonczarek and M. Krzyzosiak, Conformal transformation method and symmetry aspects of the group C4v in a model of high-Tc superconductors with anisotropic gap, Physica C 426(431), 278 (2005)
https://doi.org/10.1016/j.physc.2005.01.023
|
6 |
R. Gonczarek, L. Jacak, M. Krzyzosiak, and A. Gonczarek, Competition mechanism between singlet and triplet superconductivity in the tight-binding model with anisotropic attractive potential, Eur. Phys. J. B 49(2), 171 (2006)
https://doi.org/10.1140/epjb/e2006-00047-7
|
7 |
R. Gonczarek, M. Krzyzosiak, L. Jacak, and A. Gonczarek, Coexistence of spin-singlet s- and d-wave and spin-triplet p-wave order parameters in anisotropic superconductors, phys. stat. sol. (b) 244, 3559 (2007)
|
8 |
R. Gonczarek, M. Krzyzosiak, and A. Gonczarek, Islands of stability of the d-wave order parameter in s-wave anisotropic superconductors, Eur. Phys. J. B 61(3), 299 (2008)
https://doi.org/10.1140/epjb/e2008-00072-6
|
9 |
D. Kasinathan, K. W. Lee, and W. E. Pickett, On heavy carbon doping of MgB2, Physica C 424(3–4), 116 (2005)
https://doi.org/10.1016/j.physc.2005.05.002
|
10 |
J. Kortus, O. V. Dolgov, R. K. Kremer, and A. A. Golubov, Band filling and interband scattering effects in MgB2: Carbon versus aluminum doping, Phys. Rev. Lett. 94(2), 027002 (2005)
https://doi.org/10.1103/PhysRevLett.94.027002
|
11 |
W. S. Agrestini, C. Metallo, M. Filippi, L. Simonelli, G. Campi, C. Sanipoli, E. Liarokapis, S. De Negri, M. Giovannini, A. Saccone, A. Latini, and A. Bianconi, Substitution of Sc for Mg in MgB2: Effects on transition temperature and Kohn anomaly, Phys. Rev. B 70(13), 134514 (2004)
https://doi.org/10.1103/PhysRevB.70.134514
|
12 |
H. Mori, T. Okano, M. Kamiya, M. Haemori, H. Suzuki, S. Tanaka, Y. Nishio, K. Kajita, and H. Moriyama, Bandwidth and band filling control in organic conductors, Physica C357–360, 103 (2001)
https://doi.org/10.1016/S0921-4534(01)00176-9
|
13 |
M. Mulak and R. Gonczarek, Structures of thermodynamic functions for S-paired fermi systems in parametric equations approach, Acta Phys. Pol. A 89(5–6), 689 (1996)
https://doi.org/10.12693/APhysPolA.89.689
|
14 |
A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill Book Company, 1971, §51
|
15 |
N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, 1976, Ch. 34 Superconductivity
|
16 |
C. Kittel, Introduction to Solid State Physics, John Wiley and Sons, Inc. NY, 1966, Ch. 11
|
17 |
J. Spałek, Introduction to Condensed Matter Physics, Wydawnictwo Naukowe PWN SA, Warszawa, 2015, Ch. 17
|
18 |
H. Ibach and H. Lüth, Solid State Physics. An Introduction to Principles of Material Science, Berlin Heidelberg: Springer-Verlag, 1995, Ch. 10.5
|
19 |
M. Cyrot and D. Pavuna, Introduction to Superconductivity and High-Tc Materials, World Scientific Publ. Co. (London, New Jersey, Singapore, Hong Kong, Bangalore, Beijing, 1992), Ch. 7.1
https://doi.org/10.1142/1039
|
20 |
A. P. Durajski, R. Szcze¸śniak, and Y. Li, Non-BCS thermodynamic properties of H2S superconductor, Physica C 515, 1 (2015)
https://doi.org/10.1016/j.physc.2015.04.005
|
21 |
A. P. Durajski and R. Szcze¸śniak, Estimation of the superconducting parameters for silane at high pressure, Mod. Phys. Lett. B 28(07), 1450052 (2014)
https://doi.org/10.1142/S0217984914500523
|
22 |
R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik, Specific heat and thermodynamic critical field for calcium under the pressure at 120 GPa, Mod. Phys. Lett. B 26(08), 1250050 (2012)
https://doi.org/10.1142/S0217984912500509
|
23 |
B. Lorenz, J. Cmaidalka, R. L. Meng, and C. W. Chu, Thermodynamic properties and pressure effect on the superconductivity in CaAlSi and SrAlSi, Phys. Rev. B 68(1), 014512 (2003)
https://doi.org/10.1103/PhysRevB.68.014512
|
24 |
A. P. Durajski, Quantitative analysis of nonadiabatic effects in dense H3S and PH3 superconductors, Sci. Rep. 6(1), 38570 (2016)
https://doi.org/10.1038/srep38570
|
25 |
A. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525(7567), 73 (2015)
https://doi.org/10.1038/nature14964
|
26 |
M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, Crystal structure of the superconducting phase of sulfur hydride, Nat. Phys. 12(9), 835 (2016)
|
27 |
Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, The metallization and superconductivity of dense hydrogen sulfide, J. Chem. Phys. 140(17), 174712 (2014)
https://doi.org/10.1063/1.4874158
|
28 |
R. Gonczarek, M. Gładysiewicz, and M. Mulak, On possible formalism of anisotropic fermi liquid and BCS– type superconductivity, Int. J. Mod. Phys. B 15(05), 491 (2001)
https://doi.org/10.1142/S0217979201004459
|
29 |
F. C. Zhang and T. M. Rice, Effective Hamiltonian for the superconducting Cu oxides, Phys. Rev. B 37(7), 3759 (1988)
https://doi.org/10.1103/PhysRevB.37.3759
|
30 |
R. Szcze¸śniak and A. P. Durajski, The thermodynamic properties of the high-pressure superconducting state in the hydrogen-rich compounds, Solid State Sci. 25, 45 (2013)
https://doi.org/10.1016/j.solidstatesciences.2013.07.023
|
31 |
R. Szcze¸śniak and A. P. Durajski, Superconducting state above the boiling point of liquid nitrogen in the GaH3 compound, Supercond. Sci. Technol. 27(1), 015003 (2013)
https://doi.org/10.1088/0953-2048/27/1/015003
|
32 |
D. Y. Xing, M. Liu, Y. G. Wang, and J. Dong, Analytic approach to the antiferromagnetic van Hove singularity model for high-Tc superconductors, Phys. Rev. B 60(13), 9775 (1999)
https://doi.org/10.1103/PhysRevB.60.9775
|
33 |
E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen, Band-structure trend in holedoped cuprates and correlation with Tc max, Phys. Rev. Lett. 87(4), 047003 (2001)
https://doi.org/10.1103/PhysRevLett.87.047003
|
34 |
O. K. Andersen, A. I. Liechtenstein, O. Jepsen, and F. Paulsen, LDA energy bands, low-energy hamiltonians, t′, t′′, t^(k), and J^, J. Phys. Chem. Solids 56(12), 1573 (1995) O. K. Andersen, S. Y. Savrasov, O. Jepsen, and A. I. Liechtenstein, Out-of-plane instability and electronphonon contribution tos- and d-wave pairing in hightemperature superconductors; LDA linear-response calculation for doped CaCuO2 and a generic tight-binding model, J. Low Temp. Phys. 105(3–4), 285 (1996)
https://doi.org/10.1007/BF00768402
|
35 |
R. Gonczarek and M. Krzyzosiak, Some universal relations between the gap and thermodynamic functions plausible for various models of superconductors, phys. stat. sol. (b) 238, 29 (2003)
|
36 |
R. Szczee¸śniak, A. P. Durajski, and L. Herok, Theoretical description of the SrPt3P superconductor in the strongcoupling limit, Phys. Scr. 89(12), 125701 (2014)
https://doi.org/10.1088/0031-8949/89/12/125701
|
37 |
R. Szczee¸śniak and A. P. Durajski, The Energy Gap in the (Hg1−xSnx)Ba2Ca2Cu3O8+y Superconductor, Journal of Superconductivity and Novel Magnetism 27(6), 1363 (2014)
https://doi.org/10.1007/s10948-013-2472-1
|
38 |
R. Szczee¸śniak and A. P. Durajski, Thermodynamics of the superconducting state in calcium at 200 GPa, Journal of Superconductivity and Novel Magnetism 25(2), 399 (2012)
https://doi.org/10.1007/s10948-011-1326-y
|
39 |
M. Krzyzosiak, R. Gonczarek, A. Gonczarek, and L. Jacak, Applications of the conformal transformation method in studies of composed superconducting systems, Front. Phys. 11(6), 117407 (2016)
https://doi.org/10.1007/s11467-016-0579-0
|
40 |
R. Baquero, D. Quesada, and C. Trallero-Giner, BCSuniversal ratios within the Van Hove scenario, Physica C 271(1–2), 122 (1996)
https://doi.org/10.1016/S0921-4534(96)00551-5
|
41 |
M. Mulak and R. Gonczarek, Discontinuous phase transitions in S-paired Fermi systems, Acta Physica Polonica A 92, 1177 (1997)
https://doi.org/10.12693/APhysPolA.92.1177
|
42 |
R. Gonczarek, M. Krzyzosiak, and M. Mulak, Valuation of characteristic ratios for high-Tc superconductors with anisotropic gap in the conformal transformation method, J. Phys. A 37(18), 4899 (2004)
https://doi.org/10.1088/0305-4470/37/18/001
|
43 |
R. Gonczarek, M. Gładysiewicz, and M. Mulak, Equilibrium states and thermodynamical properties of d-wave paired HTSC in the tight-binding model, phys. stat. sol. (b) 233, 351 (2002)
|
44 |
R. Gonczarek and M. Mulak, Enhancement of critical temperature of superconductors implied by the local fluctuation of EDOS, Phys. Lett. A 251(4), 262 (1999)
https://doi.org/10.1016/S0375-9601(98)00905-0
|
45 |
J. Bouvier and J. Bok, The gap symmetry and fluctuations in high Tc superconductors, Eds. J. Bok, G. Deutscher, D. Pavuna, and S. Wolf, Plenum Press, New York, 1998, p. 37
|
46 |
R. Baquero, D. Quesada, and C. Trallero-Giner, BCSuniversal ratios within the Van Hove scenario, Physica C 271(1–2), 122 (1996)
https://doi.org/10.1016/S0921-4534(96)00551-5
|
47 |
R. Gonczarek, M. Krzyzosiak, A. Gonczarek, and L. Jacak, New classes of integrals inherent in the mathematical structure of extended equations describing superconducting systems, Int. J. Mod. Phys. B 29(17), 1550117 (2015)
https://doi.org/10.1142/S0217979215501179
|
48 |
R. Gonczarek, M. Krzyzosiak, A. Gonczarek, and L. Jacak, On new families of integrals in analytical studies of superconductors within the conformal transformation method, Adv. Condens. Matter Phys. 2015, 1 (2015)
https://doi.org/10.1155/2015/835897
|
49 |
A. Bianconi and M. Filippi, Feshbach Shape Resonances in Multiband high Tc Superconductors in: Symmetry and Heterogeneity in High Temperature Superconductors, Ed. A. Bianconi, NATO Science Series (II): Mathematics, Physics and Chemistry- Vol. 2014, Springer 2006, Ch. 1.2
|
50 |
J. K. Ren, X. B. Zhu, H. F. Yu, Y. Tian, H. F. Yang, C. Z. Gu, N. L. Wang, Y. F. Ren, and S. P. Zhao, Energy gaps in Bi2Sr2CaCu2O8+d cuprate superconductors, Sci. Rep. 2(1), 248 (2012)
https://doi.org/10.1038/srep00248
|
51 |
T. J. Reber, S. Parham, N. C. Plumb, Y. Cao, H. Li, Z. Sun, Q. Wang, H. Iwasawa, M. Arita, J. S. Wen, Z. J. Xu, G. D. Gu, Y. Yoshida, H. Eisaki, G. B. Arnold, and D. S. Dessau, Pairing, pair-breaking, and their roles in setting the Tc of cuprate high temperature superconductors, arXiv: 1508.06252v1 (2015)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|