Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2015, Vol. 10 Issue (3) : 100305    https://doi.org/10.1007/s11467-015-0470-4
RESEARCH ARTICLE
A possible interplay between electron beams and magnetic fluxes in the Aharonov–Bohm effect
Wang Rui-Feng(王瑞峰)()
Department of Physics, Beijing Jiaotong University, Beijing 100044, China
 Download: PDF(180 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Most studies on the magnetic Aharonov–Bohm (A–B) effect focus on the action exerted by the magnetic flux on the electron beam, but neglect the back-action exerted by the electron beam on the magnetic flux. This paper focuses on the latter, which is the electromotive force ΔU across the solenoid induced by the time-dependent magnetic field of the electron beam. Based on the backaction analysis, we observe that the magnetic A–B effect arises owing to the interaction energy between the magnetic field of the electron beam and the magnetic field of the solenoid. We also demonstrate that the interpretation attributing the magnetic A–B effect to the vector potential violates the uncertainty principle.

Keywords Aharonov–Bohm effect      uncertainty principle      superconductivity      superconducting quantum interference device (SQUID)     
Corresponding Author(s): Wang Rui-Feng(王瑞峰)   
Issue Date: 11 June 2015
 Cite this article:   
Wang Rui-Feng(王瑞峰). A possible interplay between electron beams and magnetic fluxes in the Aharonov–Bohm effect[J]. Front. Phys. , 2015, 10(3): 100305.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0470-4
https://academic.hep.com.cn/fop/EN/Y2015/V10/I3/100305
1 P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, 1958
2 L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory), Beijing World Publishing Corporation, 1999
3 Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115(3), 485 (1959)
https://doi.org/10.1103/PhysRev.115.485
4 R. G. Chambers, Shift of an electron interference pattern by enclosed magnetic flux, Phys. Rev. Lett. 5(1), 3 (1960)
https://doi.org/10.1103/PhysRevLett.5.3
5 A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, and H. Yamada, Evidence for Aharonov–Bohm effect with magnetic field completely shielded from electron wave, Phys. Rev. Lett. 56(8), 792 (1986)
https://doi.org/10.1103/PhysRevLett.56.792
6 Y. Aharonov and D. Bohm, Further considerations on electromagnetic potentials in the quantum theory, Phys. Rev. 123(4), 1511 (1961)
https://doi.org/10.1103/PhysRev.123.1511
7 M. Peskin and A. Tonomura, The Aharonov–Bohm effect, Berlin: Springer-Verlag, 1989
https://doi.org/10.1007/BFb0032076
8 E. L. Feinberg, On the “special role” of the electromagnetic potentials in quantum mechanics, Sov. Phys. Usp. 5(5), 753 (1963)
https://doi.org/10.1070/PU1963v005n05ABEH003453
9 H. Erlichson, Aharonov–Bohm effect — Quantum effects on charged particles in field-free regions, Am. J. Phys. 38(2), 162 (1970)
https://doi.org/10.1119/1.1976266
10 R. F. Wang, An experimental scheme to verify the dynamics of the Aharonov–Bohm effect, Chin. Phys. B 18(8), 3226 (2009)
https://doi.org/10.1088/1674-1056/18/8/022
11 R. F. Wang, Influence of induced charges in the electric Aharonov–Bohm effect, arXiv: 1409.6793, 2014
12 W. H. Furry and N. F. Ramsey, Significance of potentials in quantum theory, Phys. Rev. 118(3), 623 (1960)
https://doi.org/10.1103/PhysRev.118.623
13 L. Vaidman, Role of potentials in the Aharonov–Bohm effect, Phys. Rev. A 86(4), 040101 (2012)
https://doi.org/10.1103/PhysRevA.86.040101
14 V. B. Braginsky and F. Y. Khalili, Quantum Measurement, Cambridge University Press, 1992
https://doi.org/10.1017/CBO9780511622748
15 J. von Neumann, Mathematical Foundation of Quantum Mechanics, translated by R. T. Beyer, Princeton University Press, 1955
16 B. Liebowitz, Significance of the Aharonov–Bohm effect, Nuovo Cim. 38(2), 932 (1965)
https://doi.org/10.1007/BF02748608
17 T. H. Boyer, Does the Aharonov–Bohm effect exist? Found. Phys. 30(6), 893 (2000)
https://doi.org/10.1023/A:1003602524894
18 A. Caprez, B. Barwick, and H. Batelaan, Macroscopic test of the Aharonov–Bohm effect, Phys. Rev. Lett. 99(21), 210401 (2007)
https://doi.org/10.1103/PhysRevLett.99.210401
19 M. Tinkham, Introduction to Superconductivity, New York: McGraw-Hill, Inc., 1996
20 Deaver and W. M. Fairbank, Experimental evidence for quantized flux in superconducting cylinders, Phys. Rev. Lett. 7(2), 43 (1961)
https://doi.org/10.1103/PhysRevLett.7.43
21 N. Byers and C. N. Yang, Theoretical considerations concerning quantized magnetic flux in superconducting cylinders, Phys. Rev. Lett. 7(2), 46 1961)
https://doi.org/10.1103/PhysRevLett.7.46
22 A. Tonomura, Direct observation of thitherto unobservable quantum phenomena by using electrons, Proc. Natl. Acad. Sci. USA 102(42), 14952 (2005)
https://doi.org/10.1073/pnas.0504720102
23 A. Tonomura, Quantum phenomena visualized by electron waves, Int. J. Mod. Phys. B 21(32), 5291 (2007)
https://doi.org/10.1142/S021797920703837X
24 A. Tonomura, Applications of electron holography, Rev. Mod. Phys. 59(3), 639 (1987)
https://doi.org/10.1103/RevModPhys.59.639
25 M. A. Biondi, A. T. Forrester, M. P. Garfunkel, and C. B. Satterthwaite, Experimental evidence for an energy gap in superconductors, Rev. Mod. Phys. 30, 1109 (1958)
https://doi.org/10.1103/RevModPhys.30.1109
26 W. H. Louisell, Quantum Statistical Properties of Radiation, John Wiley & Sons, Inc., 1990
[1] Mike Guidry, Yang Sun, Lian-Ao Wu, Cheng-Li Wu. Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity[J]. Front. Phys. , 2020, 15(4): 43301-.
[2] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[3] Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2[J]. Front. Phys. , 2019, 14(1): 13501-.
[4] Shengshan Qin, Yinxiang Li, Qiang Zhang, Congcong Le, Jiangping Hu. Theoretical studies of superconductivity in doped BaCoSO[J]. Front. Phys. , 2018, 13(3): 137502-.
[5] Ryszard Gonczarek, Mateusz Krzyzosiak, Adam Gonczarek, Lucjan Jacak. Analytical assessment of some characteristic ratios for s-wave superconductors[J]. Front. Phys. , 2018, 13(2): 137403-.
[6] R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides[J]. Front. Phys. , 2018, 13(2): 137401-.
[7] Qian Chen,Xiaohui Yang,Xiaojun Yang,Jian Chen,Chenyi Shen,Pan Zhang,Yupeng Li,Qian Tao,Zhu-An Xu. Enhanced superconductivity in hole-doped Nb2PdS5[J]. Front. Phys. , 2017, 12(5): 127402-.
[8] Mateusz Krzyzosiak, Ryszard Gonczarek, Adam Gonczarek, Lucjan Jacak. Applications of the conformal transformation method in studies of composed superconducting systems[J]. Front. Phys. , 2016, 11(6): 117407-.
[9] Jiangping Hu,Jing Yuan. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity[J]. Front. Phys. , 2016, 11(5): 117404-.
[10] Mike Guidry, Yang Sun. Superconductivity and superfluidity as universal emergent phenomena[J]. Front. Phys. , 2015, 10(4): 107404-.
[11] Dingping Li, Baruch Rosenstein, B. Ya. Shapiro, I. Shapiro. Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator[J]. Front. Phys. , 2015, 10(3): 107402-.
[12] Qijin Chen, Jibiao Wang. Pseudogap phenomena in ultracold atomic Fermi gases[J]. Front. Phys. , 2014, 9(5): 539-570.
[13] Jiajun Ouyang, W. LiMing, Liangbin Hu. Andreev reflection and tunneling spectrum on metal–superconductor–metal junctions[J]. Front. Phys. , 2012, 7(4): 449-452.
[14] Elbio Dagotto, Adriana Moreo, Andrew Nicholson, Qinglong Luo, Shuhua Liang, Xiaotian Zhang. Properties of the multiorbital Hubbard models for the iron-based superconductors[J]. Front. Phys. , 2011, 6(4): 379-397.
[15] Han-Yong Choi, Chandra M. Varma, Xing-jiang Zhou. Superconductivity in the cuprates: Deduction of mechanism for d-wave pairing through analysis of ARPES[J]. Front. Phys. , 2011, 6(4): 440-449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed