|
|
Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator |
Dingping Li1,2( ),Baruch Rosenstein3,4,*( ),B. Ya. Shapiro5( ),I. Shapiro5 |
1. School of Physics, Peking University, Beijing 100871, China
2. Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
3. Electrophysics Department, National Chiao Tung University, Hsinchu 30050, Taiwan, China
4. Physics Department, Ariel University, Ariel 40700, Israel
5. Physics Department, Bar-Ilan University, 52900 Ramat-Gan, Israel |
|
|
Abstract New two-dimensional systems such as the surfaces of topological insulators (TIs) and graphene offer the possibility of experimentally investigating situations considered exotic just a decade ago. These situations include the quantum phase transition of the chiral type in electronic systems with a relativistic spectrum. Phonon-mediated (conventional) pairing in the Dirac semimetal appearing on the surface of a TI causes a transition into a chiral superconducting state, and exciton condensation in these gapless systems has long been envisioned in the physics of narrow-band semiconductors. Starting from the microscopic Dirac Hamiltonian with local attraction or repulsion, the Bardeen–Cooper–Schrieffer type of Gaussian approximation is developed in the framework of functional integrals. It is shown that owing to an ultrarelativistic dispersion relation, there is a quantum critical point governing the zero-temperature transition to a superconducting state or the exciton condensed state. Quantum transitions having critical exponents differ greatly from conventional ones and belong to the chiral universality class. We discuss the application of these results to recent experiments in which surface superconductivity was found in TIs and estimate the feasibility of phonon pairing.
|
Keywords
topological insulator
Weyl semimetal
superconductivity
quantum criticality
|
Corresponding Author(s):
Baruch Rosenstein
|
Issue Date: 11 June 2015
|
|
1 |
S. Q. Shen, Topological Insulators, Heidelberg: Springer-Verlag, 2012
https://doi.org/10.1007/978-3-642-32858-9
|
2 |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
|
3 |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
|
4 |
M. I. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge: Cambridge University Press, 2012
https://doi.org/10.1017/CBO9781139031080
|
5 |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
|
6 |
A. M. Black-Schaffer and S. Doniach, Resonating valence bonds and mean-field d-wave superconductivity in graphite, Phys. Rev. B 75(13), 134512 (2007)
https://doi.org/10.1103/PhysRevB.75.134512
|
7 |
S. Pathak, V. B. Shenoy, and G. Baskaran, Possible hightemperature superconducting state with a d+id pairing symmetry in doped graphene, Phys. Rev. B 81(8), 085431 (2010)
https://doi.org/10.1103/PhysRevB.81.085431
|
8 |
R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Chiral superconductivity from repulsive interactions in doped graphene, Nat. Phys. 8(2), 158 (2012)
https://doi.org/10.1038/nphys2208
|
9 |
B. Roy and I. F. Herbut, Unconventional superconductivity on honeycomb lattice: Theory of Kekule order parameter, Phys. Rev. B 82(3), 035429 (2010)
https://doi.org/10.1103/PhysRevB.82.035429
|
10 |
D. V. Khveshchenko, Ghost excitonic insulator transition in layered graphite, Phys. Rev. Lett. 87(24), 246802 (2001)
https://doi.org/10.1103/PhysRevLett.87.246802
|
11 |
O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, Gap generation and semimetal–insulator phase transition in graphene, Phys. Rev. B 81(7), 075429 (2010)
https://doi.org/10.1103/PhysRevB.81.075429
|
12 |
B. Rosenstein and B. J. Warr, Dynamical symmetry breaking in 2+1 dimensions, Phys. Lett. B 218(4), 465 (1989)
https://doi.org/10.1016/0370-2693(89)91448-2
|
13 |
M. V. Ulybyshev, P. V. Buividovich, M. I. Katsnelson, and M. I. Polikarpov, Monte Carlo study of the semimetal–insulator phase transition in monolayer graphene with a realistic interelectron interaction potential, Phys. Rev. Lett. 111(5), 056801 (2013)
https://doi.org/10.1103/PhysRevLett.111.056801
|
14 |
J. Martin, B. E. Feldman, R. T. Weitz, M. T. Allen, and A. Yacoby, Local compressibility measurements of correlated states in suspended bilayer graphene, Phys. Rev. Lett. 105(25), 256806 (2010)
https://doi.org/10.1103/PhysRevLett.105.256806
|
15 |
R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and A. Yacoby, Broken-symmetry states in doubly gated suspended bilayer graphene, Science 330(6005), 812 (2010)
https://doi.org/10.1126/science.1194988
|
16 |
F. Freitag, J. Trbovic, M. Weiss, and C. Schonenberger, Spontaneously gapped ground state in suspended bilayer graphene, Phys. Rev. Lett. 108(7), 076602 (2012)
https://doi.org/10.1103/PhysRevLett.108.076602
|
17 |
L. Velasco, W. Jing, Y. Bao, P. Lee, V. Kratz, M. Aji, C. N. Bockrath, C. Lau, R. Varma, D. Stillwell, F. Smirnov, J. Zhang, J. Jung, and A. H. MacDonald, Transport spectroscopy of symmetry-broken insulating states in bilayer graphene, Nat. Nanotechnol. 7(3), 156 (2012)
https://doi.org/10.1038/nnano.2011.251
|
18 |
V. M. Nabutovskii and B. Ya. Shapiro, Superconductivity in a system of interacting localized and delocalized electrons, Zh. Eksp. Teor. Fiz. 84, 422 (1983) [Sov. Phys. JETP 57(1), 245 (1983)]
|
19 |
P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006)
https://doi.org/10.1103/RevModPhys.78.17
|
20 |
J. Orenstein and A. J. Millis, Advances in the physics of high-temperature superconductivity, Science 288(5465), 468 (2000)
https://doi.org/10.1126/science.288.5465.468
|
21 |
J. Singleton and C. Mielke, Quasi-two-dimensional organic superconductors: A review, Contemp. Phys. 43(2), 63 (2002)
https://doi.org/10.1080/00107510110108681
|
22 |
I. N. Khlyustikov and A. I. Buzdin, Twinning-plane superconductivity, Adv. Phys. 36(3), 271 (1987)
https://doi.org/10.1080/00018738700101012
|
23 |
X. Zhu, L. Santos, R. Sankar, S. Chikara, C. Howard, F. C. Chou, C. Chamon, and M. El-Batanouny, Interaction of phonons and Dirac fermions on the surface of Bi2Se3: A strong Kohn anomaly, Phys. Rev. Lett. 107(18), 186102 (2011)
https://doi.org/10.1103/PhysRevLett.107.186102
|
24 |
C.W. Luo, H. J. Wang, S. A. Ku, H. J. Chen, T. T. Yeh, J. Y. Lin, K. H. Wu, J. Y. Juang, B. L. Young, T. Kobayashi, C. M. Cheng, C. H. Chen, K. D. Tsuei, R. Sankar, F. C. Chou, K. A. Kokh, O. E. Tereshchenko, E. V. Chulkov, Yu. M. Andreev, and G. D. Gu, Snapshots of Dirac fermions near the Dirac point in topological insulators, Nano Lett. 13(12), 5797 (2013)
https://doi.org/10.1021/nl4021842
|
25 |
X. Zhu, L. Santos, C. Howard, R. Sankar, F. C. Chou, C. Chamon, and M. El-Batanouny, Electron–phonon coupling on the surface of the topological insulator Bi2Se3 determined from surface-phonon dispersion measurements, Phys. Rev. Lett. 108(18), 185501 (2012)
https://doi.org/10.1103/PhysRevLett.108.185501
|
26 |
S. Das Sarma and Q. Z. Li, Many-body effects and possible superconductivity in the two-dimensional metallic surface states of three-dimensional topological insulators, Phys. Rev. B 88, 081404(R) (2013)
|
27 |
Z. H. Pan, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, and T. Valla, Measurement of an exceptionally weak electronphonon coupling on the surface of the topological insulator Bi2Se3 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 108(18), 187001 (2012)
https://doi.org/10.1103/PhysRevLett.108.187001
|
28 |
V. Parente, A. Tagliacozzo, F. von Oppen, and F. Guinea, Electron-phonon interaction on the surface of a threedimensional topological insulator, Phys. Rev. B 88(7), 075432 (2013)
https://doi.org/10.1103/PhysRevB.88.075432
|
29 |
M. Cheng, R. M. Lutchyn, and S. Das Sarma, Topological protection of Majorana qubits, Phys. Rev. B 85(16), 165124 (2012)
https://doi.org/10.1103/PhysRevB.85.165124
|
30 |
D. Li, B. Rosenstein, B. Ya. Shapiro, and I. Shapiro, Quantum critical point in the superconducting transition on the surface of a topological insulator, Phys. Rev. B 90(5), 054517 (2014)
https://doi.org/10.1103/PhysRevB.90.054517
|
31 |
H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5(6), 438 (2009)
https://doi.org/10.1038/nphys1270
|
32 |
J. G. Checkelsky, Y. S. Hor, R. J. Cava, and N. P. Ong, Bulk band gap and surface state conduction observed in voltagetuned crystals of the topological insulator Bi2Se3, Phys. Rev. Lett. 106(19), 196801 (2011)
https://doi.org/10.1103/PhysRevLett.106.196801
|
33 |
D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3, Nat. Phys. 8(6), 459 (2012)
https://doi.org/10.1038/nphys2286
|
34 |
C. K. Lu and I. F. Herbut, Pairing symmetry and vortex zero mode for superconducting Dirac fermions, Phys. Rev. B 82(14), 144505 (2010)
https://doi.org/10.1103/PhysRevB.82.144505
|
35 |
M. Sato and S. Fujimoto, Topological phases of noncentrosymmetric superconductors: Edge states, Majorana fermions, and non-Abelian statistics, Phys. Rev. B 79(9), 094504 (2009)
https://doi.org/10.1103/PhysRevB.79.094504
|
36 |
S. Sachdev, Quantum Phase Transitions, Cambridge: Cambridge University Press, 2011
https://doi.org/10.1017/CBO9780511973765
|
37 |
I. Herbut, A Modern Approach to Critical Phenomena, Cambridge: Cambridge University Press, 2010
|
38 |
D. J. Amit, Field Theory, The Renormalization Group and Critical Phenomena, London: World Scientific, 2005
https://doi.org/10.1142/5715
|
39 |
B. Rosenstein, B. J. Warr, and S. H. Park, Four-fermion theory is renormalizable in 2+1 dimensions, Phys. Rev. Lett. 62(13), 1433 (1989)
https://doi.org/10.1103/PhysRevLett.62.1433
|
40 |
B. Rosenstein, B. J. Warr, and S. H. Park, Dynamical symmetry breaking in four-fermion interaction models, Phys. Rep. 205(2), 59 (1991)
https://doi.org/10.1016/0370-1573(91)90129-A
|
41 |
G. Gat, A. Kovner, and B. Rosenstein, Chiral phase transitions in d= 3 and renormalizability of four-Fermi interactions, Nucl. Phys. B 385(1-2), 76 (1992)
https://doi.org/10.1016/0550-3213(92)90095-S
|
42 |
B. Rosenstein, Hoi-Lai Yu, and A. Kovner, Critical exponents of new universality classes, Phys. Lett. B 314(3-4), 381 (1993)
https://doi.org/10.1016/0370-2693(93)91253-J
|
43 |
R. Schneider, A. G. Zaitsev, D. Fuchs, and H. v. L?hneysen, Superconductor–insulator quantum phase transition in disordered FeSe thin films, Phys. Rev. Lett. 108(25), 257003 (2012)
https://doi.org/10.1103/PhysRevLett.108.257003
|
44 |
V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, Electron–electron interactions in graphene: Current status and perspectives, Rev. Mod. Phys. 84(3), 1067 (2012)
https://doi.org/10.1103/RevModPhys.84.1067
|
45 |
H. A. Fertig, Energy spectrum of a layered system in a strong magnetic field, Phys. Rev. B 40(2), 1087 (1989)
https://doi.org/10.1103/PhysRevB.40.1087
|
46 |
S. Q. Murphy, J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, and K. W. West, Many-body integer quantum Hall effect: Evidence for new phase transitions, Phys. Rev. Lett. 72(5), 728 (1994)
https://doi.org/10.1103/PhysRevLett.72.728
|
47 |
I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet, Phys. Rev. Lett. 84(25), 5808 (2000)
https://doi.org/10.1103/PhysRevLett.84.5808
|
48 |
I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Observation of a linearly dispersing collective mode in a quantum Hall ferromagnet, Phys. Rev. Lett. 87(3), 036803 (2001)
https://doi.org/10.1103/PhysRevLett.87.036803
|
49 |
Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing, and W. Wegscheider, Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum Hall bilayers, Phys. Rev. Lett. 104(11), 116802 (2010)
https://doi.org/10.1103/PhysRevLett.104.116802
|
50 |
A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Exciton transport and Andreev reflection in a bilayer quantum Hall system, Phys. Rev. Lett. 106(23), 236807 (2011)
https://doi.org/10.1103/PhysRevLett.106.236807
|
51 |
X. Huang, W. Dietsche, M. Hauser, and K. von Klitzing, Coupling of Josephson currents in quantum Hall bilayers, Phys. Rev. Lett. 109(15), 156802 (2012)
https://doi.org/10.1103/PhysRevLett.109.156802
|
52 |
B. Seradjeh, J. E. Moore, and M. Franz, Exciton condensation and charge fractionalization in a topological insulator film, Phys. Rev. Lett. 103(6), 066402 (2009)
https://doi.org/10.1103/PhysRevLett.103.066402
|
53 |
Z. Wang, N. Hao, Z. G. Fu, and P. Zhang, Excitonic condensation for the surface states of topological insulator bilayers, New J. Phys. 14(6), 063010 (2012)
https://doi.org/10.1088/1367-2630/14/6/063010
|
54 |
D. K. Efimkin, Yu. E. Lozovik, and A. A. Sokolik, Electron– hole pairing in a topological insulator thin film, Phys. Rev. B 86(11), 115436 (2012)
https://doi.org/10.1103/PhysRevB.86.115436
|
55 |
S. Rist, A. A. Varlamov, A. H. MacDonald, R. Fazio, and M. Polini, Photoemission spectra of massless Dirac fermions on the verge of exciton condensation, Phys. Rev. B 87(7), 075418 (2013)
https://doi.org/10.1103/PhysRevB.87.075418
|
56 |
D. W. Zhang, Z. D. Wang, and S. L. Zhu, Relativistic quantum effects of Dirac particles simulated by ultracold atoms, Front. Phys. 7(1), 31 (2012)
https://doi.org/10.1007/s11467-011-0223-y
|
57 |
L. Fu and E. Berg, Odd-parity topological superconductors: Theory and application to CuxBi2Se3, Phys. Rev. Lett. 105(9), 097001 (2010)
https://doi.org/10.1103/PhysRevLett.105.097001
|
58 |
B. Rosenstein, B. Ya. Shapiro, D. Li, and I. Shapiro, Triplet superconductivity in 3D Dirac semi-metal due to exchange interaction, J. Phys.: Condens. Matter 27(2), 025701 (2015)
https://doi.org/10.1088/0953-8984/27/2/025701
|
59 |
A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, New York: Pergamon Press, 1965
|
60 |
E. M. Lifshits and L. P. Pitaeskii, Course of Theoretical Physics (Vol. 9): Statistical Physics, Part 2, Oxford: Prgamon Press, 1980
|
61 |
J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective action for composite operators, Phys. Rev. D 10(8), 2428 (1974)
https://doi.org/10.1103/PhysRevD.10.2428
|
62 |
R. Haussmann, Self-Consistent Quantum-Field Theory and Bosonization for Strongly Correlated Electron Systems, Springer, 1999
|
63 |
Z. J. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. M. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)
https://doi.org/10.1103/PhysRevB.85.195320
|
64 |
P. Hosur, X. Dai, Z. Fang, and X. L. Qi, Time-reversalinvariant topological superconductivity in doped Weyl semimetals, Phys. Rev. B 90(4), 045130 (2014)
https://doi.org/10.1103/PhysRevB.90.045130
|
65 |
V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Ac conductivity of graphene: From tight-binding model to 2+1- dimensional quantum electrodynamics, Int. J. Mod. Phys. B 21(27), 4611 (2007)
https://doi.org/10.1142/S0217979207038022
|
66 |
A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Zh. Eksp. Teor. Fiz. 32, 1442 (1957) [Sov. Phys. JETP 5(6), 1174 (1957)]
|
67 |
J. D. Ketterson and S. N. Song, Superconductivity, Cambridge: Cambridge University Press, 1999
https://doi.org/10.1017/CBO9781139171090
|
68 |
B. Rosenstein and D. Li, Ginzburg–Landau theory of type II superconductors in magnetic field, Rev. Mod. Phys. 82(1), 109 (2010)
https://doi.org/10.1103/RevModPhys.82.109
|
69 |
I. F. Herbut, V. Juricic, and O. Vafek, Relativistic Mott criticality in graphene, Phys. Rev. B 80(7), 075432 (2009)
https://doi.org/10.1103/PhysRevB.80.075432
|
70 |
L. Janssen and I. F. Herbut, Antiferromagnetic critical point on graphene’s honeycomb lattice: A functional renormalization group approach, Phys. Rev. B 89(20), 205403 (2014)
https://doi.org/10.1103/PhysRevB.89.205403
|
71 |
L. Del Debbio, S. J. Hands, and J. C. Mehegan, Threedimensional thirring model for small Nf, Nucl. Phys. B 502(1-2), 269 (1997)
https://doi.org/10.1016/S0550-3213(97)00435-5
|
72 |
I. M. Barbour, N. Psycharis, E. Focht, W. Franzki, and J. Jersak, Strongly coupled lattice gauge theory with dynamical fermion mass generation in three dimensions, Phys. Rev. D 58(7), 074507 (1998)
https://doi.org/10.1103/PhysRevD.58.074507
|
73 |
S. Chandrasekharan and A. Li, Fermion bag solutions to some sign problems in four-fermion field theories, Phys. Rev. D 85(9), 091502 (2012)
https://doi.org/10.1103/PhysRevD.85.091502
|
74 |
S. Chandrasekharan, Solutions to sign problems in lattice Yukawa models, Phys. Rev. D 86(2), 021701 (2012)
https://doi.org/10.1103/PhysRevD.86.021701
|
75 |
S. Chandrasekharan and Anyi Li, Quantum critical behavior in three dimensional lattice Gross–Neveu models, Phys. Rev. D 88, 021701(R) (2013)
|
76 |
F. F. Assaad and I. F. Herbut, Pinning the order: The nature of quantum criticality in the Hubbard model on honeycomb lattice, Phys. Rev. X 3, 031010 (2013)
https://doi.org/10.1103/PhysRevX.3.031010
|
77 |
S. Sorella, Y. Otsuka, and S. Yunoki, Absence of a spin liquid phase in the Hubbard model on the honeycomb lattice, Scientific Reports 2, 992 (2012)
https://doi.org/10.1038/srep00992
|
78 |
B. W. Lee, Chiral Dynamics, New York: Gordon and Breach, 1972
|
79 |
Z. H. Pan, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, and T. Valla, Measurement of an exceptionally weak electron– phonon coupling on the surface of the topological insula-tor Bi2Se3 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 108(18), 187001 (2012)
https://doi.org/10.1103/PhysRevLett.108.187001
|
80 |
V. Parente, A. Tagliacozzo, F. von Oppen, and F. Guinea, Electron–phonon interaction on the surface of a threedimensional topological insulator, Phys. Rev. B 88(7), 075432 (2013)
https://doi.org/10.1103/PhysRevB.88.075432
|
81 |
Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator, Phys. Rev. Lett. 104(5), 057001 (2010)
https://doi.org/10.1103/PhysRevLett.104.057001
|
82 |
L. A. Wray, S. Y. Xu, Y. Xia, Y. S. Hor, D. Qian, A. V. Fedorov, H. Lin, A. Bansil, R. J. Cava, and M. Z. Hasan, Observation of topological order in a superconducting doped topological insulator, Nat. Phys. 6(11), 855 (2010)
https://doi.org/10.1038/nphys1762
|
83 |
G. Koren, T. Kirzhner, E. Lahoud, K. Chashka, and A. Kanigel, Proximity-induced superconductivity in topological Bi2Te2Se and Bi2Se3 films: Robust zero-energy bound state possibly due to Majorana fermions, Phys. Rev. B 84(22), 224521 (2011)
https://doi.org/10.1103/PhysRevB.84.224521
|
84 |
P. H. Le, W.-Y. Tzeng, H.-J. Chen, C. W. Luo, J.- Y. Lin, and J. Leu, Superconductivity in textured Bi clusters/Bi2Te3 films, APL Mat. 2, 096105 (2014)
https://doi.org/10.1063/1.4894779
|
85 |
K. Kirshenbaum, P. S. Syers, A. P. Hope, N. P. Butch, J. R. Jeffries, S. T. Weir, J. J. Hamlin, M. B. Maple, Y. K. Vohra, and J. Paglione, Pressure-induced unconventional superconducting phase in the topological insulator Bi2Se3, Phys. Rev. Lett. 111(8), 087001 (2013)
https://doi.org/10.1103/PhysRevLett.111.087001
|
86 |
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a three-dimensional topological Dirac semimetal, Na3Bi, Science 343(6173), 864 (2014)
https://doi.org/10.1126/science.1245085
|
87 |
S. Y. Xu, C. Liu, S. K. Kushwaha, T. R. Chang, J. W. Krizan, R. Sankar, C. M. Polley, J. Adell, T. Balasubramanian, K. Miyamoto, N. Alidoust, G. Bian, M. Neupane, I. Belopolski, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, F. C. Chou, T. Okuda, A. Bansil, R. J. Cava, and M. Z. Hasan, Observation of a bulk 3D Dirac multiplet, Lifshitz transition, and nestled spin states in Na3Bi, arXiv: 1312.7624 (2013)
|
88 |
M. Orlita, D. M. Basko, M. S. Zholudev, F. Teppe, W. Knap, V. I. Gavrilenko, N. N. Mikhailov, S. A. Dvoretskii, P. Neugebauer, C. Faugeras, A. L. Barra, G. Martinez, and M. Potemski, Observation of three-dimensional massless Kane fermions in a zinc-blende crystal, Nat. Phys. 10(3), 233 (2014)
https://doi.org/10.1038/nphys2857
|
89 |
G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett. 107(18), 186806 (2011)
https://doi.org/10.1103/PhysRevLett.107.186806
|
90 |
Z. J. Wang, H. M. Weng, Q. Wu, X. Dai, and Z. Fang, Three-dimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)
https://doi.org/10.1103/PhysRevB.88.125427
|
91 |
M. Neupane, S. Y. Xu, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. C. Chou, and M. Z. Hasan, Observation of quantumtunneling modulated spin texture in ultrathin topological insulator Bi2Se3 films, Nat. Commun. 05, 3786 (2014), arXiv: 1404.2830v1
https://doi.org/10.1038/ncomms4841
|
92 |
Y. Fuseya, M. Ogata, and H. Fukuyama, Interband contributions from the magnetic field on Hall effects for Dirac electrons in bismuth, Phys. Rev. Lett. 102(6), 066601 (2009)
https://doi.org/10.1103/PhysRevLett.102.066601
|
93 |
P. Hosur, S. A. Parameswaran, and A. Vishwanath, Charge transport in Weyl semimetals, Phys. Rev. Lett. 108(4), 046602 (2012)
https://doi.org/10.1103/PhysRevLett.108.046602
|
94 |
T. Kariyado and M. Ogata, Three-dimensional Dirac electrons at the Fermi energy in cubic inverse perovskites: Ca3PbO and its family, J. Phys. Soc. Jpn. 80(8), 083704 (2011)
https://doi.org/10.1143/JPSJ.80.083704
|
95 |
T. Kariyado and M. Ogata, Low-energy effective hamiltonian and the surface states of Ca3PbO, J. Phys. Soc. Jpn. 81(6), 064701 (2012)
https://doi.org/10.1143/JPSJ.81.064701
|
96 |
P. Delplace, J. Li, and D. Carpentier, Topological Weyl semi-metal from a lattice model, EPL (Europhysics Letters) 97(6), 67004 (2012)
https://doi.org/10.1209/0295-5075/97/67004
|
97 |
B. Rosenstein and M. Lewkowicz, Dynamics of electric transport in interacting Weyl semimetals, Phys. Rev. B 88(4), 045108 (2013)
https://doi.org/10.1103/PhysRevB.88.045108
|
98 |
M. N. Ali, Q. D. Gibson, T. Klimczuk, and R. J. Cava, Noncentrosymmetric superconductor with a bulk threedimensional Dirac cone gapped by strong spin–orbit coupling, Phys. Rev. B 89(2), 020505 (2014) (R)
https://doi.org/10.1103/PhysRevB.89.020505
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|