Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (5) : 53201    https://doi.org/10.1007/s11467-020-0965-5
TOPICAL REVIEW
Stanene: A good platform for topological insulator and topological superconductor
Chen-Xiao Zhao (赵晨晓)1, Jin-Feng Jia (贾金锋)1,2,3()
1. Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2. Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
3. CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(6335 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two dimensional (2D) topological insulators (TIs) and topological superconductors (TSCs) have been intensively studied for recent years due to their great potential for dissipationless electron transportation and fault-tolerant quantum computing, respectively. Here we focus on stanene, the tin analogue of graphene, to give a brief review of their development as a candidate for both 2D TI and TSC. Stanene is proposed to be a TI with a large gap of 0.3 eV, and its topological properties are sensitive to various factors, e.g., the lattice constants, chemical functionalization and layer thickness, which offer various methods for phase tunning. Experimentally, the inverted gap and edge states are observed recently, which are strong evidences for TI. In addition, stanene is also predicted to be a time reversal invariant TSC by breaking inversion symmetry, supporting helical Majorana edge modes. The layer-dependent superconductivity of stanene is recently confirmed by both transport and scanning tunneling microscopy measurements. This review gives a detailed introduction to stanene and its topological properties and some prospects are also discussed.

Keywords topological insulator      topological superconductor      stanene     
Corresponding Author(s): Jin-Feng Jia (贾金锋)   
Issue Date: 17 August 2020
 Cite this article:   
Chen-Xiao Zhao (赵晨晓),Jin-Feng Jia (贾金锋). Stanene: A good platform for topological insulator and topological superconductor[J]. Front. Phys. , 2020, 15(5): 53201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0965-5
https://academic.hep.com.cn/fop/EN/Y2020/V15/I5/53201
1 C. L. Kane and E. J. Z. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
https://doi.org/10.1103/PhysRevLett.95.146802
2 C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
https://doi.org/10.1103/PhysRevLett.95.226801
3 M. König, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318(5851), 766 (2007)
https://doi.org/10.1126/science.1148047
4 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
5 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
6 Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Large-gap quantum spin Hall insulators in thin films, Phys. Rev. Lett. 111(13), 136804 (2013)
https://doi.org/10.1103/PhysRevLett.111.136804
7 Y. Xu, P. Tang, and S. C. Zhang, Large-gap quantum spin Hall states in decorated stanene grown on a substrate, Phys. Rev. B 92(8), 081112 (2015)
https://doi.org/10.1103/PhysRevB.92.081112
8 D. Wang, L. Chen, X. Wang, G. Cui, and P. Zhang, The effect of substrate and external strain on electronic structures of stanene film, Phys. Chem. Chem. Phys. 17(40), 26979 (2015)
https://doi.org/10.1039/C5CP04322K
9 Z. Ni, E. Minamitani, Y. Ando, and S. Watanabe, Germanene and stanene on two-dimensional substrates: Dirac cone and Z2 invariant, Phys. Rev. B 96(7), 075427 (2017)
https://doi.org/10.1103/PhysRevB.96.075427
10 R. Zhang, W. Ji, C. Zhang, P. Li, and P. Wang, Prediction of flatness-driven quantum spin Hall effect in functionalized germanene and stanene, Phys. Chem. Chem. Phys. 18(40), 28134 (2016)
https://doi.org/10.1039/C6CP06216D
11 B. H. Chou, Z. Q. Huang, C. H. Hsu, F. C. Chuang, Y. T. Liu, H. Lin, and A. Bansil, Hydrogenated ultra-thin tin films predicted as two-dimensional topological insulators, New J. Phys. 16(11), 115008 (2014)
https://doi.org/10.1088/1367-2630/16/11/115008
12 Y. Zang, T. Jiang, Y. Gong, Z. Guan, C. Liu, M. Liao, K. Zhu, Z. Li, L. Wang, W. Li, C. Song, D. Zhang, Y. Xu, K. He, X. Ma, S. C. Zhang, and Q. K. Xue, Realizing an epitaxial decorated stanene with an insulating bandgap, Adv. Funct. Mater. 28(35), 1802723 (2018)
https://doi.org/10.1002/adfm.201802723
13 C. Z. Xu, Y. H. Chan, P. Chen, X. Wang, D. Flötotto, J. A. Hlevyack, G. Bian, S. K. Mo, M. Y. Chou, and T. C. Chiang, Gapped electronic structure of epitaxial stanene on InSb(111), Phys. Rev. B 97(3), 035122 (2018)
https://doi.org/10.1103/PhysRevB.97.035122
14 F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S. C. Zhang, and J. Jia, Epitaxial growth of twodimensional stanene, Nat. Mater. 14(10), 1020 (2015)
https://doi.org/10.1038/nmat4384
15 C. Z. Xu, Y. H. Chan, Y. Chen, P. Chen, X. Wang, C. Dejoie, M. H. Wong, J. A. Hlevyack, H. Ryu, H. Y. Kee, N. Tamura, M. Y. Chou, Z. Hussain, S. K. Mo, and T. C. Chiang, Elemental topological Dirac semimetal: α-Sn on InSb(111), Phys. Rev. Lett. 118(14), 146402 (2017)
https://doi.org/10.1103/PhysRevLett.118.146402
16 J. Deng, B. Xia, X. Ma, H. Chen, H. Shan, X. Zhai, B. Li, A. Zhao, Y. Xu, W. Duan, S. C. Zhang, B. Wang, and J. G. Hou, Epitaxial growth of ultraflat stanene with topological band inversion, Nat. Mater. 17(12), 1081 (2018)
https://doi.org/10.1038/s41563-018-0203-5
17 X. Zheng, J.-F. Zhang, B. Tong, and R.-R. Du, Epitaxial growth and electronic properties of few-layer stanene on InSb(1 1 1), 2D Mater. 7, 011001 (2019)
https://doi.org/10.1088/2053-1583/ab42b9
18 C. X. Zhao, J. Qin, B. Xia, B. Yang, H. Zheng, S. Y. Wang, C. H. liu, Y. Y. Li, D. D. Guan, and J. F. Jia, Combining quantum spin hall effect and superconductivity in few-layer stanene, arXiv: 2006.09834 (2020)
19 C. W. J. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4(1), 113 (2013)
https://doi.org/10.1146/annurev-conmatphys-030212-184337
20 J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)
https://doi.org/10.1103/PhysRevLett.104.040502
21 J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nat. Phys. 7(5), 412 (2011)
https://doi.org/10.1038/nphys1915
22 X. L. Qi, T. L. Hughes, S. Raghu, and S. C. Zhang, Time-reversal-invariant topological superconductors and superfluids in two and three dimensions, Phys. Rev. Lett. 102(18), 187001 (2009)
https://doi.org/10.1103/PhysRevLett.102.187001
23 J. Wang, Y. Xu, and S. C. Zhang, Two-dimensional time-reversal-invariant topological superconductivity in a doped quantum spin-Hall insulator, Phys. Rev. B 90(5), 054503 (2014)
https://doi.org/10.1103/PhysRevB.90.054503
24 M. Liao, Y. Zang, Z. Guan, H. Li, Y. Gong, K. Zhu, X. P. Hu, D. Zhang, Y. Xu, Y. Y. Wang, K. He, X. C. Ma, S. C. Zhang, and Q. K. Xue, Superconductivity in few-layer stanene, Nat. Phys. 14(4), 344 (2018)
https://doi.org/10.1038/s41567-017-0031-6
25 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
26 J. Gou, L. Kong, H. Li, Q. Zhong, W. Li, P. Cheng, L. Chen, and K. Wu, Strain-induced band engineering in monolayer stanene on Sb(111), Phys. Rev. Mater. 1(5), 054004 (2017)
https://doi.org/10.1103/PhysRevMaterials.1.054004
27 J. Gao, G. Zhang, and Y. W. Zhang, Exploring Ag(111) substrate for epitaxially growing monolayer stanene: A first-principles study, Sci. Rep. 6(1), 29107 (2016)
https://doi.org/10.1038/srep29107
28 J. Yuhara, Y. Fujii, K. Nishino, N. Isobe, M. Nakatake, L. Xian, A. Rubio, and G. Le Lay, Large area planar stanene epitaxially grown on Ag(111), 2D Mater. 5, 025002 (2018)
https://doi.org/10.1088/2053-1583/aa9ea0
29 Y. H. Song, Z. W. Wang, Z. Y. Jia, and X. Y. Zhu, Highbuckled R3 stanene with topologically nontrivial energy gap, arXiv: 1707.08657 (2017)
30 B. A. Bernevig and S. C. Zhang, Quantum spin Hall effect, Phys. Rev. Lett. 96(10), 106802 (2006)
https://doi.org/10.1103/PhysRevLett.96.106802
31 Y. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Spinorbit gap of graphene: First-principles calculations, Phys. Rev. B 75(4), 041401 (2007)
https://doi.org/10.1103/PhysRevB.75.041401
32 B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
https://doi.org/10.1126/science.1133734
33 A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)
https://doi.org/10.1038/nmat4802
34 X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science 346(6215), 1344 (2014)
https://doi.org/10.1126/science.1256815
35 S. C. Zhang and X. L. Qi, A fine point on topological insulators, Phys. Today 63(8), 12 (2010)
https://doi.org/10.1063/1.4796321
36 S. Liu, M. X. Wang, C. Chen, X. Xu, J. Jiang, L. X. Yang, H. F. Yang, Y. Y. Lv, J. Zhou, Y. B. Chen, S. H. Yao, M. H. Lu, Y. F. Chen, C. Felser, B. H. Yan, Z. K. Liu, and Y. L. Chen, Experimental observation of conductive edge states in weak topological insulator candidate HfTe5, APL Mater. 6(12), 121111 (2018)
https://doi.org/10.1063/1.5050847
37 F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen, Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material, Science 357(6348), 287 (2017)
https://doi.org/10.1126/science.aai8142
38 S. Tang, C. Zhang, D. Wong, Z. Pedramrazi, H. Z. Tsai, C. Jia, B. Moritz, M. Claassen, H. Ryu, S. Kahn, J. Jiang, H. Yan, M. Hashimoto, D. Lu, R. G. Moore, C. C. Hwang, C. Hwang, Z. Hussain, Y. Chen, M. M. Ugeda, Z. Liu, X. Xie, T. P. Devereaux, M. F. Crommie, S. K. Mo, and Z. X. Shen, Quantum spin Hall state in monolayer 1T′- WTe2, Nat. Phys. 13(7), 683 (2017)
https://doi.org/10.1038/nphys4174
39 P. Chen, W. W. Pai, Y. H. Chan, W. L. Sun, C. Z. Xu, D. S. Lin, M. Y. Chou, A. V. Fedorov, and T. C. Chiang, Large quantum-spin-Hall gap in single-layer 1T′-WSe2, Nat. Commun. 9(1), 2003 (2018)
https://doi.org/10.1038/s41467-018-04395-2
40 F. Zheng, C. Cai, S. Ge, X. Zhang, X. Liu, H. Lu, Y. Zhang, J. Qiu, T. Taniguchi, K. Watanabe, S. Jia, J. Qi, J. H. Chen, D. Sun, and J. Feng, On the quantum spin Hall gap of monolayer 1T′-WTe2, Adv. Mater. 28(24), 4845 (2016)
https://doi.org/10.1002/adma.201600100
41 L. Peng, Y. Yuan, G. Li, X. Yang, J. J. Xian, C. J. Yi, Y. G. Shi, and Y. S. Fu, Observation of topological states residing at step edges of WTe2, Nat. Commun. 8(1), 659 (2017)
https://doi.org/10.1038/s41467-017-00745-8
42 Z. Fei, T. Palomaki, S. Wu, W. Zhao, X. Cai, B. Sun, P. Nguyen, J. Finney, X. Xu, and D. H. Cobden, Edge conduction in monolayer WTe2, Nat. Phys. 13(7), 677 (2017)
https://doi.org/10.1038/nphys4091
43 S. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal, Science 359(6371), 76 (2018)
https://doi.org/10.1126/science.aan6003
44 A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)
https://doi.org/10.1038/nmat4802
45 S. Murakami, N. Nagaosa, and S. C. Zhang, Spin-Hall insulator, Phys. Rev. Lett. 93(15), 156804 (2004)
https://doi.org/10.1103/PhysRevLett.93.156804
46 M. Cardona, S. C. Zhang, and X. L. Qi, A fine point on topological insulators, Phys. Today 63(8), 10 (2010)
https://doi.org/10.1063/1.3480059
47 S. Groves and W. Paul, Band structure of gray tin, Phys. Rev. Lett. 11(5), 194 (1963)
https://doi.org/10.1103/PhysRevLett.11.194
48 S. Groves, R. Brown, and C. Pidgeon, Interband magnetoreflection and band structure of HgTe, Phys. Rev. 161(3), 779 (1967)
https://doi.org/10.1103/PhysRev.161.779
49 P. Tang, P. Chen, W. Cao, H. Huang, S. Cahangirov, L. Xian, Y. Xu, S. C. Zhang, W. Duan, and A. Rubio, Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator, Phys. Rev. B 90(12), 121408 (2014)
https://doi.org/10.1103/PhysRevB.90.121408
50 F. F. Yun, D. L. Cortie, and X. Wang, Tuning the electronic structure in stanene/graphene bilayers using strain and gas adsorption, Phys. Chem. Chem. Phys. 19(37), 25574 (2017)
https://doi.org/10.1039/C7CP03678G
51 M. Maniraj, B. Stadtmüller, D. Jungkenn, M. Düvel, S. Emmerich, W. Shi, J. Stöckl, L. Lyu, J. Kollamana, Z. Wei, A. Jurenkow, S. Jakobs, B. Yan, S. Steil, M. Cinchetti, S. Mathias, and M. Aeschlimann, A case study for the formation of stanene on a metal surface, Commun. Phys. 2(1), 12 (2019)
https://doi.org/10.1038/s42005-019-0111-2
52 Y. Liu, N. Gao, J. Zhuang, C. Liu, J. Wang, W. Hao, S. X. Dou, J. Zhao, and Y. Du, Realization of strained stanene by interface engineering, J. Phys. Chem. Lett. 10(7), 1558 (2019)
https://doi.org/10.1021/acs.jpclett.9b00348
53 Y. Ding and Y. Wang, Quasi-free-standing features of stanene/stanane on InSe and GaTe nanosheets: A computational study, J. Phys. Chem. C 119(49), 27848 (2015)
https://doi.org/10.1021/acs.jpcc.5b08946
54 R. W. Zhang, C. W. Zhang, W. X. Ji, S. S. Li, S. J. Hu, S. S. Yan, P. Li, P. J. Wang, and F. Li, Ethynylfunctionalized stanene film: A promising candidate as large-gap quantum spin Hall insulator, New J. Phys. 17(8), 083036 (2015)
https://doi.org/10.1088/1367-2630/17/8/083036
55 R. Zhang, C. Zhang, W. Ji, S. Li, S. Yan, S. Hu, P. Li, P. Wang, and F. Li, Room temperature quantum spin Hall insulator in ethynyl-derivative functionalized stanene films, Sci. Rep. 6(1), 18879 (2016)
https://doi.org/10.1038/srep18879
56 Y. Wang, W. Ji, C. Zhang, P. Li, F. Li, P. Wang, S. Li, and S. Yan, Large-gap quantum spin Hall state in functionalized dumbbell stanene, Appl. Phys. Lett. 108(7), 073104 (2016)
https://doi.org/10.1063/1.4942380
57 M. Houssa, B. van den Broek, K. Iordanidou, A. K. A. Lu, G. Pourtois, J. P. Locquet, V. Afanas’ev, and A. Stesmans, Topological to trivial insulating phase transition in stanene, Nano Res. 9(3), 774 (2016)
https://doi.org/10.1007/s12274-015-0956-y
58 Z. Liu, C. X. Liu, Y. S. Wu, W. H. Duan, F. Liu, and J. Wu, Stable nontrivial Z2 topology in ultrathin Bi(111) films: A first-principles study, Phys. Rev. Lett. 107(13), 136805 (2011)
https://doi.org/10.1103/PhysRevLett.107.136805
59 T. Zhang, J. Ha, N. Levy, Y. Kuk, and J. Stroscio, Electric-field tuning of the surface band structure of topological insulator Sb2Te3 thin films, Phys. Rev. Lett. 111(5), 056803 (2013)
https://doi.org/10.1103/PhysRevLett.111.056803
60 J. Liu, T. H. Hsieh, P. Wei, W. Duan, J. Moodera, and L. Fu, Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator, Nat. Mater. 13(2), 178 (2014)
https://doi.org/10.1038/nmat3828
61 F. Qu, A. J. A. Beukman, S. Nadj-Perge, M. Wimmer, B. M. Nguyen, W. Yi, J. Thorp, M. Sokolich, A. A. Kiselev, M. J. Manfra, C. M. Marcus, and L. P. Kouwenhoven, Electric and magnetic tuning between the trivial and topological phases in InAs/GaSb double quantum wells, Phys. Rev. Lett. 115(3), 036803 (2015)
https://doi.org/10.1103/PhysRevLett.115.036803
62 E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement, C. Olsen, S. Luescher, X. Xu, J. A. Folk, and D. H. Cobden, Gate-induced superconductivity in a monolayer topological insulator, Science 362(6417), 922 (2018)
https://doi.org/10.1126/science.aar4426
63 V. Fatemi, S. Wu, Y. Cao, L. Bretheau, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Electrically tunable low-density superconductivity in a monolayer topological insulator, Science 362(6417), 926 (2018)
https://doi.org/10.1126/science.aar4642
64 S. D. Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Information 1(1), 15001 (2015)
https://doi.org/10.1038/npjqi.2015.1
65 J. D. Sau, R. M. Lutchyn, S. Tewari, and S. D. Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)
https://doi.org/10.1103/PhysRevLett.104.040502
66 Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105(17), 177002 (2010)
https://doi.org/10.1103/PhysRevLett.105.177002
67 V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices, Science 336(6084), 1003 (2012)
https://doi.org/10.1126/science.1222360
68 S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, Science 346(6209), 602 (2014)
https://doi.org/10.1126/science.1259327
69 S. Jeon, Y. Xie, J. Li, Z. Wang, B. A. Bernevig, and A. Yazdani, Distinguishing a Majorana zero mode using spin-resolved measurements, Science 358(6364), 772 (2017)
https://doi.org/10.1126/science.aan3670
70 X. L. Qi, T. L. Hughes, and S. C. Zhang, Chiral topological superconductor from the quantum Hall state, Phys. Rev. B 82(18), 184516 (2010)
https://doi.org/10.1103/PhysRevB.82.184516
71 Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z. Chen, T. Nie, Q. Shao, Y. Fan, S. C. Zhang, K. Liu, J. Xia, and K. L. Wang, Chiral Majorana fermion modes in a quantum anomalous Hall insulatorsuperconductor structure, Science 357(6348), 294 (2017)
https://doi.org/10.1126/science.aag2792
72 L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)
https://doi.org/10.1103/PhysRevLett.100.096407
73 J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Robustness of Majorana fermions in proximity-induced superconductors, Phys. Rev. B 82(9), 094522 (2010)
https://doi.org/10.1103/PhysRevB.82.094522
74 J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator–superconductor Bi2Te3/NbSe2 heterostructure, Phys. Rev. Lett. 114(1), 017001 (2015)
https://doi.org/10.1103/PhysRevLett.114.017001
75 K. Bartkowski, A. Gladun, C. Gladun, J. Rafalowicz, and H. Vinzelberg, Thermal conductivity anisotropy of tin monocrystals in the temperature range 0.1 to 7 K, physica status solidi (a) 62, 207 (1980)
https://doi.org/10.1002/pssa.2210620123
76 N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82(2), 1539 (2010)
https://doi.org/10.1103/RevModPhys.82.1539
77 K. He, Y. Wang, and Q. K. Xue, Topological materials: Quantum anomalous Hall system, Annu. Rev. Condens. Matter Phys. 9(1), 329 (2018)
https://doi.org/10.1146/annurev-conmatphys-033117-054144
78 H. Jiang, Z. Qiao, H. Liu, and Q. Niu, Quantum anomalous Hall effect with tunable Chern number in magnetic topological insulator film, Phys. Rev. B 85(4), 045445 (2012)
https://doi.org/10.1103/PhysRevB.85.045445
79 C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
https://doi.org/10.1126/science.1234414
80 R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)
https://doi.org/10.1126/science.1187485
81 H. Zhang, J. Zhang, B. Zhao, T. Zhou, and Z. Yang, Quantum anomalous Hall effect in stable dumbbell stanene, Appl. Phys. Lett. 108(8), 082104 (2016)
https://doi.org/10.1063/1.4942193
82 S. C. Wu, G. Shan, and B. Yan, Prediction of near-roomtemperature quantum anomalous Hall effect on honeycomb materials, Phys. Rev. Lett. 113(25), 256401 (2014)
https://doi.org/10.1103/PhysRevLett.113.256401
83 C. Z. Xu, Y. H. Chan, Y. Chen, P. Chen, X. Wang, C. Dejoie, M. H. Wong, J. A. Hlevyack, H. Ryu, H. Y. Kee, N. Tamura, M. Y. Chou, Z. Hussain, S. K. Mo, and T. C. Chiang, Elemental topological Dirac semimetal: α-Sn on InSb(111), Phys. Rev. Lett. 118(14), 146402 (2017)
https://doi.org/10.1103/PhysRevLett.118.146402
84 Z. Y. Wang, J. O. Rodriguez, M. Graham, and G. D. Gu, Signature of dispersing 1D Majorana channels in an iron-based superconductor, arXiv: 1903.00515 (2019)
[1] Chang-Yong Zhu, Shi-Han Zheng, Hou-Jian Duan, Ming-Xun Deng, Rui-Qiang Wang. Double Andreev reflections at surface states of the topological insulators with hexagonal warping[J]. Front. Phys. , 2020, 15(2): 23602-.
[2] Y. X. Zhao. Equivariant PT-symmetric real Chern insulators[J]. Front. Phys. , 2020, 15(1): 13603-.
[3] Mengyun He, Huimin Sun, Qing Lin He. Topological insulator: Spintronics and quantum computations[J]. Front. Phys. , 2019, 14(4): 43401-.
[4] Junjie Qi, Haiwen Liu, Hua Jiang, X. C. Xie. Dephasing effects in topological insulators[J]. Front. Phys. , 2019, 14(4): 43403-.
[5] Hai-Peng Sun, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (II)[J]. Front. Phys. , 2019, 14(3): 33405-.
[6] Dingping Li, Baruch Rosenstein, B. Ya. Shapiro, I. Shapiro. Chiral universality class of normal-superconducting and exciton condensation transitions on surface of topological insulator[J]. Front. Phys. , 2015, 10(3): 107402-.
[7] Ming Yang, Xiao-Long Zhang, Wu-Ming Liu. Tunable topological quantum states in three- and two-dimensional materials[J]. Front. Phys. , 2015, 10(2): 108102-.
[8] Yi-Bin Hu, Yong-Hong Zhao, Xue-Feng Wang. A computational investigation of topological insulator Bi2Se3 film[J]. Front. Phys. , 2014, 9(6): 760-767.
[9] Ying Xing (邢颖), Yi Sun (孙祎), Meenakshi Singh, Yan-Fei Zhao (赵弇斐), Moses H. W. Chan, Jian Wang (王健). Electronic transport properties of topological insulator films and low dimensional superconductors[J]. Front. Phys. , 2013, 8(5): 491-508.
[10] Hui Li (李辉), Hailin Peng (彭海琳), Wenhui Dang (党文辉), Lili Yu (余力立), Zhongfan Liu (刘忠范). Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties[J]. Front. Phys. , 2012, 7(2): 208-217.
[11] Ivan Knez, Rui-Rui Du. Quantum spin Hall effect in inverted InAs/GaSb quantum wells[J]. Front. Phys. , 2012, 7(2): 200-207.
[12] Jun-liang Zhang, Si-jia Zhang, Hong-ming Weng, Wei Zhang, Liu-xiang Yang, Qing-qing Liu, Pan-pan Kong, Jie Zhu, Shao-min Feng, Xian-cheng Wang, Ri-cheng Yu, Lie-zhao Cao, Shoucheng Zhang, Xi Dai, Zhong Fang, Chang-qing Jin. Superconductivity of topological matters induced via pressure[J]. Front. Phys. , 2012, 7(2): 193-199.
[13] Yulin Chen. Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy[J]. Front. Phys. , 2012, 7(2): 175-192.
[14] Yong-qing Li, Ke-hui Wu, Jun-ren Shi, Xin-cheng Xie. Electron transport properties of three-dimensional topological insulators[J]. Front. Phys. , 2012, 7(2): 165-174.
[15] Zhi-yong Wang, Peng Wei, Jing Shi. Tuning the Fermi level in Bi2Se3 bulk materials and transport devices[J]. Front. Phys. , 2012, 7(2): 160-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed