|
|
Stanene: A good platform for topological insulator and topological superconductor |
Chen-Xiao Zhao (赵晨晓)1, Jin-Feng Jia (贾金锋)1,2,3( ) |
1. Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 2. Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China 3. CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Two dimensional (2D) topological insulators (TIs) and topological superconductors (TSCs) have been intensively studied for recent years due to their great potential for dissipationless electron transportation and fault-tolerant quantum computing, respectively. Here we focus on stanene, the tin analogue of graphene, to give a brief review of their development as a candidate for both 2D TI and TSC. Stanene is proposed to be a TI with a large gap of 0.3 eV, and its topological properties are sensitive to various factors, e.g., the lattice constants, chemical functionalization and layer thickness, which offer various methods for phase tunning. Experimentally, the inverted gap and edge states are observed recently, which are strong evidences for TI. In addition, stanene is also predicted to be a time reversal invariant TSC by breaking inversion symmetry, supporting helical Majorana edge modes. The layer-dependent superconductivity of stanene is recently confirmed by both transport and scanning tunneling microscopy measurements. This review gives a detailed introduction to stanene and its topological properties and some prospects are also discussed.
|
Keywords
topological insulator
topological superconductor
stanene
|
Corresponding Author(s):
Jin-Feng Jia (贾金锋)
|
Issue Date: 17 August 2020
|
|
1 |
C. L. Kane and E. J. Z. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
https://doi.org/10.1103/PhysRevLett.95.146802
|
2 |
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
https://doi.org/10.1103/PhysRevLett.95.226801
|
3 |
M. König, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318(5851), 766 (2007)
https://doi.org/10.1126/science.1148047
|
4 |
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
|
5 |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
|
6 |
Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Large-gap quantum spin Hall insulators in thin films, Phys. Rev. Lett. 111(13), 136804 (2013)
https://doi.org/10.1103/PhysRevLett.111.136804
|
7 |
Y. Xu, P. Tang, and S. C. Zhang, Large-gap quantum spin Hall states in decorated stanene grown on a substrate, Phys. Rev. B 92(8), 081112 (2015)
https://doi.org/10.1103/PhysRevB.92.081112
|
8 |
D. Wang, L. Chen, X. Wang, G. Cui, and P. Zhang, The effect of substrate and external strain on electronic structures of stanene film, Phys. Chem. Chem. Phys. 17(40), 26979 (2015)
https://doi.org/10.1039/C5CP04322K
|
9 |
Z. Ni, E. Minamitani, Y. Ando, and S. Watanabe, Germanene and stanene on two-dimensional substrates: Dirac cone and Z2 invariant, Phys. Rev. B 96(7), 075427 (2017)
https://doi.org/10.1103/PhysRevB.96.075427
|
10 |
R. Zhang, W. Ji, C. Zhang, P. Li, and P. Wang, Prediction of flatness-driven quantum spin Hall effect in functionalized germanene and stanene, Phys. Chem. Chem. Phys. 18(40), 28134 (2016)
https://doi.org/10.1039/C6CP06216D
|
11 |
B. H. Chou, Z. Q. Huang, C. H. Hsu, F. C. Chuang, Y. T. Liu, H. Lin, and A. Bansil, Hydrogenated ultra-thin tin films predicted as two-dimensional topological insulators, New J. Phys. 16(11), 115008 (2014)
https://doi.org/10.1088/1367-2630/16/11/115008
|
12 |
Y. Zang, T. Jiang, Y. Gong, Z. Guan, C. Liu, M. Liao, K. Zhu, Z. Li, L. Wang, W. Li, C. Song, D. Zhang, Y. Xu, K. He, X. Ma, S. C. Zhang, and Q. K. Xue, Realizing an epitaxial decorated stanene with an insulating bandgap, Adv. Funct. Mater. 28(35), 1802723 (2018)
https://doi.org/10.1002/adfm.201802723
|
13 |
C. Z. Xu, Y. H. Chan, P. Chen, X. Wang, D. Flötotto, J. A. Hlevyack, G. Bian, S. K. Mo, M. Y. Chou, and T. C. Chiang, Gapped electronic structure of epitaxial stanene on InSb(111), Phys. Rev. B 97(3), 035122 (2018)
https://doi.org/10.1103/PhysRevB.97.035122
|
14 |
F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S. C. Zhang, and J. Jia, Epitaxial growth of twodimensional stanene, Nat. Mater. 14(10), 1020 (2015)
https://doi.org/10.1038/nmat4384
|
15 |
C. Z. Xu, Y. H. Chan, Y. Chen, P. Chen, X. Wang, C. Dejoie, M. H. Wong, J. A. Hlevyack, H. Ryu, H. Y. Kee, N. Tamura, M. Y. Chou, Z. Hussain, S. K. Mo, and T. C. Chiang, Elemental topological Dirac semimetal: α-Sn on InSb(111), Phys. Rev. Lett. 118(14), 146402 (2017)
https://doi.org/10.1103/PhysRevLett.118.146402
|
16 |
J. Deng, B. Xia, X. Ma, H. Chen, H. Shan, X. Zhai, B. Li, A. Zhao, Y. Xu, W. Duan, S. C. Zhang, B. Wang, and J. G. Hou, Epitaxial growth of ultraflat stanene with topological band inversion, Nat. Mater. 17(12), 1081 (2018)
https://doi.org/10.1038/s41563-018-0203-5
|
17 |
X. Zheng, J.-F. Zhang, B. Tong, and R.-R. Du, Epitaxial growth and electronic properties of few-layer stanene on InSb(1 1 1), 2D Mater. 7, 011001 (2019)
https://doi.org/10.1088/2053-1583/ab42b9
|
18 |
C. X. Zhao, J. Qin, B. Xia, B. Yang, H. Zheng, S. Y. Wang, C. H. liu, Y. Y. Li, D. D. Guan, and J. F. Jia, Combining quantum spin hall effect and superconductivity in few-layer stanene, arXiv: 2006.09834 (2020)
|
19 |
C. W. J. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4(1), 113 (2013)
https://doi.org/10.1146/annurev-conmatphys-030212-184337
|
20 |
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)
https://doi.org/10.1103/PhysRevLett.104.040502
|
21 |
J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nat. Phys. 7(5), 412 (2011)
https://doi.org/10.1038/nphys1915
|
22 |
X. L. Qi, T. L. Hughes, S. Raghu, and S. C. Zhang, Time-reversal-invariant topological superconductors and superfluids in two and three dimensions, Phys. Rev. Lett. 102(18), 187001 (2009)
https://doi.org/10.1103/PhysRevLett.102.187001
|
23 |
J. Wang, Y. Xu, and S. C. Zhang, Two-dimensional time-reversal-invariant topological superconductivity in a doped quantum spin-Hall insulator, Phys. Rev. B 90(5), 054503 (2014)
https://doi.org/10.1103/PhysRevB.90.054503
|
24 |
M. Liao, Y. Zang, Z. Guan, H. Li, Y. Gong, K. Zhu, X. P. Hu, D. Zhang, Y. Xu, Y. Y. Wang, K. He, X. C. Ma, S. C. Zhang, and Q. K. Xue, Superconductivity in few-layer stanene, Nat. Phys. 14(4), 344 (2018)
https://doi.org/10.1038/s41567-017-0031-6
|
25 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
|
26 |
J. Gou, L. Kong, H. Li, Q. Zhong, W. Li, P. Cheng, L. Chen, and K. Wu, Strain-induced band engineering in monolayer stanene on Sb(111), Phys. Rev. Mater. 1(5), 054004 (2017)
https://doi.org/10.1103/PhysRevMaterials.1.054004
|
27 |
J. Gao, G. Zhang, and Y. W. Zhang, Exploring Ag(111) substrate for epitaxially growing monolayer stanene: A first-principles study, Sci. Rep. 6(1), 29107 (2016)
https://doi.org/10.1038/srep29107
|
28 |
J. Yuhara, Y. Fujii, K. Nishino, N. Isobe, M. Nakatake, L. Xian, A. Rubio, and G. Le Lay, Large area planar stanene epitaxially grown on Ag(111), 2D Mater. 5, 025002 (2018)
https://doi.org/10.1088/2053-1583/aa9ea0
|
29 |
Y. H. Song, Z. W. Wang, Z. Y. Jia, and X. Y. Zhu, Highbuckled R3 stanene with topologically nontrivial energy gap, arXiv: 1707.08657 (2017)
|
30 |
B. A. Bernevig and S. C. Zhang, Quantum spin Hall effect, Phys. Rev. Lett. 96(10), 106802 (2006)
https://doi.org/10.1103/PhysRevLett.96.106802
|
31 |
Y. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Spinorbit gap of graphene: First-principles calculations, Phys. Rev. B 75(4), 041401 (2007)
https://doi.org/10.1103/PhysRevB.75.041401
|
32 |
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
https://doi.org/10.1126/science.1133734
|
33 |
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)
https://doi.org/10.1038/nmat4802
|
34 |
X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science 346(6215), 1344 (2014)
https://doi.org/10.1126/science.1256815
|
35 |
S. C. Zhang and X. L. Qi, A fine point on topological insulators, Phys. Today 63(8), 12 (2010)
https://doi.org/10.1063/1.4796321
|
36 |
S. Liu, M. X. Wang, C. Chen, X. Xu, J. Jiang, L. X. Yang, H. F. Yang, Y. Y. Lv, J. Zhou, Y. B. Chen, S. H. Yao, M. H. Lu, Y. F. Chen, C. Felser, B. H. Yan, Z. K. Liu, and Y. L. Chen, Experimental observation of conductive edge states in weak topological insulator candidate HfTe5, APL Mater. 6(12), 121111 (2018)
https://doi.org/10.1063/1.5050847
|
37 |
F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen, Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material, Science 357(6348), 287 (2017)
https://doi.org/10.1126/science.aai8142
|
38 |
S. Tang, C. Zhang, D. Wong, Z. Pedramrazi, H. Z. Tsai, C. Jia, B. Moritz, M. Claassen, H. Ryu, S. Kahn, J. Jiang, H. Yan, M. Hashimoto, D. Lu, R. G. Moore, C. C. Hwang, C. Hwang, Z. Hussain, Y. Chen, M. M. Ugeda, Z. Liu, X. Xie, T. P. Devereaux, M. F. Crommie, S. K. Mo, and Z. X. Shen, Quantum spin Hall state in monolayer 1T′- WTe2, Nat. Phys. 13(7), 683 (2017)
https://doi.org/10.1038/nphys4174
|
39 |
P. Chen, W. W. Pai, Y. H. Chan, W. L. Sun, C. Z. Xu, D. S. Lin, M. Y. Chou, A. V. Fedorov, and T. C. Chiang, Large quantum-spin-Hall gap in single-layer 1T′-WSe2, Nat. Commun. 9(1), 2003 (2018)
https://doi.org/10.1038/s41467-018-04395-2
|
40 |
F. Zheng, C. Cai, S. Ge, X. Zhang, X. Liu, H. Lu, Y. Zhang, J. Qiu, T. Taniguchi, K. Watanabe, S. Jia, J. Qi, J. H. Chen, D. Sun, and J. Feng, On the quantum spin Hall gap of monolayer 1T′-WTe2, Adv. Mater. 28(24), 4845 (2016)
https://doi.org/10.1002/adma.201600100
|
41 |
L. Peng, Y. Yuan, G. Li, X. Yang, J. J. Xian, C. J. Yi, Y. G. Shi, and Y. S. Fu, Observation of topological states residing at step edges of WTe2, Nat. Commun. 8(1), 659 (2017)
https://doi.org/10.1038/s41467-017-00745-8
|
42 |
Z. Fei, T. Palomaki, S. Wu, W. Zhao, X. Cai, B. Sun, P. Nguyen, J. Finney, X. Xu, and D. H. Cobden, Edge conduction in monolayer WTe2, Nat. Phys. 13(7), 677 (2017)
https://doi.org/10.1038/nphys4091
|
43 |
S. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal, Science 359(6371), 76 (2018)
https://doi.org/10.1126/science.aan6003
|
44 |
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)
https://doi.org/10.1038/nmat4802
|
45 |
S. Murakami, N. Nagaosa, and S. C. Zhang, Spin-Hall insulator, Phys. Rev. Lett. 93(15), 156804 (2004)
https://doi.org/10.1103/PhysRevLett.93.156804
|
46 |
M. Cardona, S. C. Zhang, and X. L. Qi, A fine point on topological insulators, Phys. Today 63(8), 10 (2010)
https://doi.org/10.1063/1.3480059
|
47 |
S. Groves and W. Paul, Band structure of gray tin, Phys. Rev. Lett. 11(5), 194 (1963)
https://doi.org/10.1103/PhysRevLett.11.194
|
48 |
S. Groves, R. Brown, and C. Pidgeon, Interband magnetoreflection and band structure of HgTe, Phys. Rev. 161(3), 779 (1967)
https://doi.org/10.1103/PhysRev.161.779
|
49 |
P. Tang, P. Chen, W. Cao, H. Huang, S. Cahangirov, L. Xian, Y. Xu, S. C. Zhang, W. Duan, and A. Rubio, Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator, Phys. Rev. B 90(12), 121408 (2014)
https://doi.org/10.1103/PhysRevB.90.121408
|
50 |
F. F. Yun, D. L. Cortie, and X. Wang, Tuning the electronic structure in stanene/graphene bilayers using strain and gas adsorption, Phys. Chem. Chem. Phys. 19(37), 25574 (2017)
https://doi.org/10.1039/C7CP03678G
|
51 |
M. Maniraj, B. Stadtmüller, D. Jungkenn, M. Düvel, S. Emmerich, W. Shi, J. Stöckl, L. Lyu, J. Kollamana, Z. Wei, A. Jurenkow, S. Jakobs, B. Yan, S. Steil, M. Cinchetti, S. Mathias, and M. Aeschlimann, A case study for the formation of stanene on a metal surface, Commun. Phys. 2(1), 12 (2019)
https://doi.org/10.1038/s42005-019-0111-2
|
52 |
Y. Liu, N. Gao, J. Zhuang, C. Liu, J. Wang, W. Hao, S. X. Dou, J. Zhao, and Y. Du, Realization of strained stanene by interface engineering, J. Phys. Chem. Lett. 10(7), 1558 (2019)
https://doi.org/10.1021/acs.jpclett.9b00348
|
53 |
Y. Ding and Y. Wang, Quasi-free-standing features of stanene/stanane on InSe and GaTe nanosheets: A computational study, J. Phys. Chem. C 119(49), 27848 (2015)
https://doi.org/10.1021/acs.jpcc.5b08946
|
54 |
R. W. Zhang, C. W. Zhang, W. X. Ji, S. S. Li, S. J. Hu, S. S. Yan, P. Li, P. J. Wang, and F. Li, Ethynylfunctionalized stanene film: A promising candidate as large-gap quantum spin Hall insulator, New J. Phys. 17(8), 083036 (2015)
https://doi.org/10.1088/1367-2630/17/8/083036
|
55 |
R. Zhang, C. Zhang, W. Ji, S. Li, S. Yan, S. Hu, P. Li, P. Wang, and F. Li, Room temperature quantum spin Hall insulator in ethynyl-derivative functionalized stanene films, Sci. Rep. 6(1), 18879 (2016)
https://doi.org/10.1038/srep18879
|
56 |
Y. Wang, W. Ji, C. Zhang, P. Li, F. Li, P. Wang, S. Li, and S. Yan, Large-gap quantum spin Hall state in functionalized dumbbell stanene, Appl. Phys. Lett. 108(7), 073104 (2016)
https://doi.org/10.1063/1.4942380
|
57 |
M. Houssa, B. van den Broek, K. Iordanidou, A. K. A. Lu, G. Pourtois, J. P. Locquet, V. Afanas’ev, and A. Stesmans, Topological to trivial insulating phase transition in stanene, Nano Res. 9(3), 774 (2016)
https://doi.org/10.1007/s12274-015-0956-y
|
58 |
Z. Liu, C. X. Liu, Y. S. Wu, W. H. Duan, F. Liu, and J. Wu, Stable nontrivial Z2 topology in ultrathin Bi(111) films: A first-principles study, Phys. Rev. Lett. 107(13), 136805 (2011)
https://doi.org/10.1103/PhysRevLett.107.136805
|
59 |
T. Zhang, J. Ha, N. Levy, Y. Kuk, and J. Stroscio, Electric-field tuning of the surface band structure of topological insulator Sb2Te3 thin films, Phys. Rev. Lett. 111(5), 056803 (2013)
https://doi.org/10.1103/PhysRevLett.111.056803
|
60 |
J. Liu, T. H. Hsieh, P. Wei, W. Duan, J. Moodera, and L. Fu, Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator, Nat. Mater. 13(2), 178 (2014)
https://doi.org/10.1038/nmat3828
|
61 |
F. Qu, A. J. A. Beukman, S. Nadj-Perge, M. Wimmer, B. M. Nguyen, W. Yi, J. Thorp, M. Sokolich, A. A. Kiselev, M. J. Manfra, C. M. Marcus, and L. P. Kouwenhoven, Electric and magnetic tuning between the trivial and topological phases in InAs/GaSb double quantum wells, Phys. Rev. Lett. 115(3), 036803 (2015)
https://doi.org/10.1103/PhysRevLett.115.036803
|
62 |
E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement, C. Olsen, S. Luescher, X. Xu, J. A. Folk, and D. H. Cobden, Gate-induced superconductivity in a monolayer topological insulator, Science 362(6417), 922 (2018)
https://doi.org/10.1126/science.aar4426
|
63 |
V. Fatemi, S. Wu, Y. Cao, L. Bretheau, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Electrically tunable low-density superconductivity in a monolayer topological insulator, Science 362(6417), 926 (2018)
https://doi.org/10.1126/science.aar4642
|
64 |
S. D. Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Information 1(1), 15001 (2015)
https://doi.org/10.1038/npjqi.2015.1
|
65 |
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. D. Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)
https://doi.org/10.1103/PhysRevLett.104.040502
|
66 |
Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105(17), 177002 (2010)
https://doi.org/10.1103/PhysRevLett.105.177002
|
67 |
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices, Science 336(6084), 1003 (2012)
https://doi.org/10.1126/science.1222360
|
68 |
S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, Science 346(6209), 602 (2014)
https://doi.org/10.1126/science.1259327
|
69 |
S. Jeon, Y. Xie, J. Li, Z. Wang, B. A. Bernevig, and A. Yazdani, Distinguishing a Majorana zero mode using spin-resolved measurements, Science 358(6364), 772 (2017)
https://doi.org/10.1126/science.aan3670
|
70 |
X. L. Qi, T. L. Hughes, and S. C. Zhang, Chiral topological superconductor from the quantum Hall state, Phys. Rev. B 82(18), 184516 (2010)
https://doi.org/10.1103/PhysRevB.82.184516
|
71 |
Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z. Chen, T. Nie, Q. Shao, Y. Fan, S. C. Zhang, K. Liu, J. Xia, and K. L. Wang, Chiral Majorana fermion modes in a quantum anomalous Hall insulatorsuperconductor structure, Science 357(6348), 294 (2017)
https://doi.org/10.1126/science.aag2792
|
72 |
L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)
https://doi.org/10.1103/PhysRevLett.100.096407
|
73 |
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Robustness of Majorana fermions in proximity-induced superconductors, Phys. Rev. B 82(9), 094522 (2010)
https://doi.org/10.1103/PhysRevB.82.094522
|
74 |
J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator–superconductor Bi2Te3/NbSe2 heterostructure, Phys. Rev. Lett. 114(1), 017001 (2015)
https://doi.org/10.1103/PhysRevLett.114.017001
|
75 |
K. Bartkowski, A. Gladun, C. Gladun, J. Rafalowicz, and H. Vinzelberg, Thermal conductivity anisotropy of tin monocrystals in the temperature range 0.1 to 7 K, physica status solidi (a) 62, 207 (1980)
https://doi.org/10.1002/pssa.2210620123
|
76 |
N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82(2), 1539 (2010)
https://doi.org/10.1103/RevModPhys.82.1539
|
77 |
K. He, Y. Wang, and Q. K. Xue, Topological materials: Quantum anomalous Hall system, Annu. Rev. Condens. Matter Phys. 9(1), 329 (2018)
https://doi.org/10.1146/annurev-conmatphys-033117-054144
|
78 |
H. Jiang, Z. Qiao, H. Liu, and Q. Niu, Quantum anomalous Hall effect with tunable Chern number in magnetic topological insulator film, Phys. Rev. B 85(4), 045445 (2012)
https://doi.org/10.1103/PhysRevB.85.045445
|
79 |
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
https://doi.org/10.1126/science.1234414
|
80 |
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)
https://doi.org/10.1126/science.1187485
|
81 |
H. Zhang, J. Zhang, B. Zhao, T. Zhou, and Z. Yang, Quantum anomalous Hall effect in stable dumbbell stanene, Appl. Phys. Lett. 108(8), 082104 (2016)
https://doi.org/10.1063/1.4942193
|
82 |
S. C. Wu, G. Shan, and B. Yan, Prediction of near-roomtemperature quantum anomalous Hall effect on honeycomb materials, Phys. Rev. Lett. 113(25), 256401 (2014)
https://doi.org/10.1103/PhysRevLett.113.256401
|
83 |
C. Z. Xu, Y. H. Chan, Y. Chen, P. Chen, X. Wang, C. Dejoie, M. H. Wong, J. A. Hlevyack, H. Ryu, H. Y. Kee, N. Tamura, M. Y. Chou, Z. Hussain, S. K. Mo, and T. C. Chiang, Elemental topological Dirac semimetal: α-Sn on InSb(111), Phys. Rev. Lett. 118(14), 146402 (2017)
https://doi.org/10.1103/PhysRevLett.118.146402
|
84 |
Z. Y. Wang, J. O. Rodriguez, M. Graham, and G. D. Gu, Signature of dispersing 1D Majorana channels in an iron-based superconductor, arXiv: 1903.00515 (2019)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|