Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (2) : 23502    https://doi.org/10.1007/s11467-021-1146-x
RESEARCH ARTICLE
Strain induced topological transitions in twisted double bilayer graphene
Guoyu Luo1, Xinyu Lv1, Lu Wen1, Zhiqiang Li1, Zhenbing Dai2()
1. College of Physics, Sichuan University, Chengdu 610064, China
2. Department of Physics, Sichuan Normal University, Chengdu 610066, China
 Download: PDF(1542 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We theoretically study the band structures and the valley Chern numbers of the AB–AB and AB–BA stacked twisted double bilayer graphene under heterostrain effect. In the absence of heterostrain, due to the constrains by the spatial symmetries, the central two flat bands of the AB–AB are topological trivial bands, while in the AB–BA they have a finite Chern number. The heterostrain breaks all the point group symmetries and the constrains are lifted, hence the topological properties of the two arrangements can be tuned by different strain magnitudes ϵ and directions ϕ. The heterostrain has dissimilar impacts on the Chern numbers of the AB–AB and AB–BA, owing to their different band gaps, and these gaps can be modified by a vertical electric field. Our results show that the topological transitions for both arrangements occur in the ϵ range of 0.1%–0.4%, which can be realized in the graphene-based sample.

Keywords valley Chern number      twisted double bilayer graphene      flat bands      heterostrain     
Corresponding Author(s): Zhenbing Dai   
Issue Date: 25 February 2022
 Cite this article:   
Guoyu Luo,Xinyu Lv,Lu Wen, et al. Strain induced topological transitions in twisted double bilayer graphene[J]. Front. Phys. , 2022, 17(2): 23502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1146-x
https://academic.hep.com.cn/fop/EN/Y2022/V17/I2/23502
1 Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
https://doi.org/10.1038/nature26160
2 Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-flling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)
https://doi.org/10.1038/nature26154
3 X. M. Liu, Z. Hao, E. Khalaf, J. Y. Lee, Y. Ronen, H. Yoo, D. Haei Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, and P. Kim, Tunable spin-polarized correlated states in twisted double bilayer graphene, Nature 583(7815), 221 (2020)
https://doi.org/10.1038/s41586-020-2458-7
4 C. Shen, Y. Chu, Q. Wu, N. Li, S. Wang, Y. Zhao, J. Tang, J. Liu, J. Tian, K. Watanabe, T. Taniguchi, R. Yang, Z. Y. Meng, D. Shi, O. V. Yazyev, and G. Zhang, Correlated states in twisted double bilayer graphene, Nat. Phys. 16(5), 520 (2020)
https://doi.org/10.1038/s41567-020-0825-9
5 G. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. J. Fox, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, J. Jung, Z. Shi, D. Goldhaber-Gordon, Y. Zhang, and F. Wang, Signatures of gate-tunable superconductivity in trilayer graphene moiré superlattice, Nature 572(7768), 215 (2019)
https://doi.org/10.1038/s41586-019-1393-y
6 H. C. Po, L. J. Zou, A. Vishwanath, and T. Senthil, Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene, Phys. Rev. X 8(3), 031089 (2018)
https://doi.org/10.1103/PhysRevX.8.031089
7 Y. H. Zhang, D. Mao, and T. Senthil, Twisted bilayer graphene aligned with hexagonal boron nitride: Anomalous Hall effect and a lattice model, Phys. Rev. Res. 1(3), 033126 (2019)
https://doi.org/10.1103/PhysRevResearch.1.033126
8 Y. H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T. Senthil, Nearly flat Chern bands in moiré superlattices, Phys. Rev. B 99(7), 075127 (2019)
https://doi.org/10.1103/PhysRevB.99.075127
9 X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, Superconductors, orbital magnets and correlated states in magicangle bilayer graphene, Nature 574(7780), 653 (2019)
https://doi.org/10.1038/s41586-019-1695-0
10 C. L. Tschirhart, M. Serlin, H. Polshyn, A. Shragai, Z. Xia, J. Zhu, Y. Zhang, K. Watanabe, T. Taniguchi, M. E. Huber, and A. F. Young, Imaging orbital ferromagnetism in a moiré Chern insulator, Science 372(6548), 1323 (2021)
https://doi.org/10.1126/science.abd3190
11 H. Polshyn, J. Zhu, M. A. Kumar, Y. Zhang, F. Yang, C. L. Tschirhart, M. Serlin, K. Watanabe, T. Taniguchi, A. H. MacDonald, and A. F. Young, Electrical switching of magnetic order in an orbital Chern insulator, Nature 588(7836), 66 (2020)
https://doi.org/10.1038/s41586-020-2963-8
12 G. R. Chen, A. L. Sharpe, E. J. Fox, Y. H. Zhang, S. Wang, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, Z. Shi, T. Senthil, D. Goldhaber-Gordon, Y. Zhang, and F. Wang, Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice, Nature 579(7797), 56 (2020)
https://doi.org/10.1038/s41586-020-2049-7
13 A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. A. Kastner, and D. Goldhaber-Gordon, Emergent ferromagnetism near threequarters filling in twisted bilayer graphene, Science 365(6453), 605 (2019)
https://doi.org/10.1126/science.aaw3780
14 M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Intrinsic quantized anomalous Hall effect in a moiré heterostructure, Science 367(6480), 900 (2020)
https://doi.org/10.1126/science.aay5533
15 F. R. Geisenhof, F. Winterer, A. M. Seiler, J. Lenz, T. Xu, F. Zhang, and R. T. Weitz, Quantum anomalous Hall octet driven by orbital magnetism in bilayer graphene, Nature 598(7879), 53 (2021)
https://doi.org/10.1038/s41586-021-03849-w
16 E. Tang, J. W. Mei, and X. G. Wen, High-temperature fractional quantum Hall states, Phys. Rev. Lett. 106(23), 236802 (2011)
https://doi.org/10.1103/PhysRevLett.106.236802
17 K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Nearly flatbands with nontrivial topology, Phys. Rev. Lett. 106(23), 236803 (2011)
https://doi.org/10.1103/PhysRevLett.106.236803
18 T. Neupert, L. Santos, C. Chamon, and C. Mudry, Fractional quantum Hall states at zero magnetic field, Phys. Rev. Lett. 106(23), 236804 (2011)
https://doi.org/10.1103/PhysRevLett.106.236804
19 Y. F. Wang, Z. C. Gu, C. D. Gong, and D. N. Sheng, Fractional quantum Hall effect of hard-core bosons in topological flat bands, Phys. Rev. Lett. 107(14), 146803 (2011)
https://doi.org/10.1103/PhysRevLett.107.146803
20 N. R. Chebrolu, B. L. Chittari, and J. Jung, Flat bands in twisted double bilayer graphene, Phys. Rev. B 99(23), 235417 (2019)
https://doi.org//10.1103/PhysRevB.99.235417
21 G. W. Burg, J. Zhu, T. Taniguchi, K. Watanabe, A. H. MacDonald, and E. Tutuc, Correlated insulating states in twisted double bilayer graphene, Phys. Rev. Lett. 123(19), 197702 (2019)
https://doi.org/10.1103/PhysRevLett.123.197702
22 M. H. He, Y. H. Li, J. Q. Cai, Y. Liu, K. Watanabe, T. Taniguchi, X. Xu, and M. Yankowitz, Symmetry breaking in twisted double bilayer graphene, Nat. Phys. 17(1), 26 (2021)
https://doi.org/10.1038/s41567-020-1030-6
23 Y. W. Choi and H. J. Choi, Intrinsic band gap and electrically tunable flat bands in twisted double bilayer graphene, Phys. Rev. B 100, 201402(R) (2019)
https://doi.org/10.1103/PhysRevB.100.201402
24 X. M. Liu, C. L. Chiu, J. Y. Lee, G. Farahi, K. Watanabe, T. Taniguchi, A. Vishwanath, and A. Yazdani, Spectroscopy of a tunable moiré system with a correlated and topological flat band, Nat. Commun. 12(1), 2732 (2021)
https://doi.org/10.1038/s41467-021-23031-0
25 M. Koshino, Band structure and topological properties of twisted double bilayer graphene, Phys. Rev. B 99(23), 235406 (2019)
https://doi.org/10.1103/PhysRevB.99.235406
26 G. Y. Luo, L. Wen, X. Y. Lv, and Z. Li, Tunable optical property and flat bands in twisted double bilayer graphene, Phys. Lett. A 416, 127670 (2021)
https://doi.org/10.1016/j.physleta.2021.127670
27 Z. Bi, N. Yuan, and L. Fu, Designing flat band by strain, Phys. Rev. B 100(3), 035448 (2019)
https://doi.org/10.1103/PhysRevB.100.035448
28 L. Huder, A. Artaud, T. Le Quang, G. T. de Laissardière, A. G. M. Jansen, G. Lapertot, C. Chapelier, and V. T. Renard, Electronic spectrum of twisted graphene layers under heterostrain, Phys. Rev. Lett. 120(15), 156405 (2018)
https://doi.org/10.1103/PhysRevLett.120.156405
29 A. Kerelsky, L. McGilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean, A. Rubio, and A. N. Pasupathy, Magic angle spectroscopy, arXiv: 1812.08776 (2018)
30 M. Yankowitz, S. Chen, H. Polshyn, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer graphene, arXiv: 1808.07865 (2018)
31 E. McCann and M. Koshino, The electronic properties of bilayer graphene, Rep. Prog. Phys. 76(5), 056503 (2013)
https://doi.org/10.1088/0034-4885/76/5/056503
32 P. Moon and M. Koshino, Optical absorption in twisted bilayer graphene, Phys. Rev. B 87(20), 205404 (2013)
https://doi.org/10.1103/PhysRevB.87.205404
33 Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng and Z. X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening, ACS Nano 2(11), 2301 (2008)
https://doi.org/10.1021/nn800459e
34 S. B. Cronin, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. S. Dresselhaus, and M. Tinkham, Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes, Phys. Rev. Lett. 93(16), 167401 (2004)
https://doi.org/10.1103/PhysRevLett.93.167401
35 N. N. T. Nam and M. Koshino, Lattice relaxation and energy band modulation in twisted bilayer graphene, Phys. Rev. B 96(7), 075311 (2017)
https://doi.org/10.1103/PhysRevB.96.075311
36 Z. Ma, S. Li, Y. W. Zheng, M. M. Xiao, H. Jiang, J. H. Gao, and X. C. Xie, Topological flat bands in twisted trilayer graphene, Sci. Bull. (Beijing) 66(1), 18 (2021)
https://doi.org/10.1016/j.scib.2020.10.004
37 J. Liu, Z. Ma, J. Gao, and X. Dai, Quantum valley hall effect, orbital magnetism, and anomalous hall effect in twisted multilayer graphene systems, Phys. Rev. X 9(3), 031021 (2019)
https://doi.org/10.1103/PhysRevX.9.031021
38 Z. B. Dai, Y. He, and Z. Q. Li, Effects of heterostrain and lattice relaxation on the optical conductivity of twisted bilayer graphene, Phys. Rev. B 104(4), 045403 (2021)
https://doi.org/10.1103/PhysRevB.104.045403
39 L. Ju, Z. W. Shi, N. Nair, Y. Lv, C. Jin, J. Jr Velasco, C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis, and F. Wang, Topological valley transport at bilayer graphene domain walls, Nature 520(7549), 650 (2015)
https://doi.org/10.1038/nature14364
40 S. Cho, S. D. Kang, W. Kim, E. S. Lee, S. J. Woo, K. J. Kong, I. Kim, H. D. Kim, T. Zhang, J. A. Stroscio, Y. H. Kim, and H. K. Lyeo, Thermoelectric imaging of structural disorder in epitaxial graphene, Nat. Mater. 12(10), 913 (2013)
https://doi.org/10.1038/nmat3708
41 S. S. Sunku, G. X. Ni, B. Y. Jiang, H. Yoo, A. Sternbach, A. S. McLeod, T. Stauber, L. Xiong, T. Taniguchi, K. Watanabe, P. Kim, M. M. Fogler, and D. N. Basov, Photonic crystals for nano-light in moiré graphene superlattices, Science 362(6419), 1153 (2018)
https://doi.org/10.1126/science.aau5144
[1] Zhiming Chen, Xiuye Liu, Jianhua Zeng. Electromagnetically induced moiré optical lattices in a coherent atomic gas[J]. Front. Phys. , 2022, 17(4): 42508-.
[2] V. R. Shaginyan,A. Z. Msezane,G. S. Japaridze,K. G. Popov,V. A. Khodel. Strongly correlated Fermi systems as a new state of matter[J]. Front. Phys. , 2016, 11(5): 117103-.
[3] V. R. Shaginyan,A. Z. Msezane,G. S. Japaridze,K. G. Popov,J. W. Clark,V. A. Khodel. Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2[J]. Front. Phys. , 2016, 11(2): 117102-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed