|
|
Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2 |
V. R. Shaginyan1,2,*( ),A. Z. Msezane2,G. S. Japaridze2,K. G. Popov3,4,J. W. Clark5,6,V. A. Khodel5,7 |
1. Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, 188300, Russia 2. Clark Atlanta University, Atlanta, GA 30314, USA 3. Komi Science Center, Ural Division, RAS, Syktyvkar, 167982, Russia 4. Department of Physics, St. Petersburg State University, Russia 5. McDonnell Center for the Space Sciences & Department of Physics, Washington University, St. Louis, MO 63130, USA 6. Centro de Ciências Matemáticas, Universidade de Madeira, 9000-390 Funchal, Madeira, Portugal 7. Russian Research Center Kurchatov Institute, Moscow, 123182, Russia |
|
|
Abstract We reveal and explain the scaling behavior of the thermopower S/T exhibited by the archetypal heavy-fermion (HF) metal YbRh2Si2 under the application of magnetic field B at temperature T. We show that the same scaling is demonstrated by different HF compounds such as β-YbAlB4 and the strongly correlated layered cobalt oxide [BiBa0.66K0.36O2]CoO2. Using YbRh2Si2 as an example, we demonstrate that the scaling behavior of S/T is violated at the antiferromagnetic phase transition, while both the residual resistivity ρ0 and the density of states, N, experience jumps at the phase transition, causing the thermopower to make two jumps and change its sign. Our elucidation is based on flattening of the single-particle spectrum that profoundly affects ρ0 and N. To depict the main features of the S/T behavior, we construct a T –B schematic phase diagram of YbRh2Si2. Our calculated S/T for the HF compounds are in good agreement with experimental facts and support our observations.
|
Keywords
thermoelectric and thermomagnetic effects
quantum phase transition
flat bands
non-Fermi-liquid states
strongly correlated electron systems
heavy fermions
|
Corresponding Author(s):
V. R. Shaginyan
|
Online First Date: 25 December 2015
Issue Date: 29 April 2016
|
|
1 |
P. Coleman, C. Pèpin, Q. Si, and R. Ramazashvili, How do Fermi liquids get heavy and die? J. Phys.: Condens. Matter 13(35), R723 (2001)
https://doi.org/10.1088/0953-8984/13/35/202
|
2 |
H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007)
https://doi.org/10.1103/RevModPhys.79.1015
|
3 |
V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Scaling behavior of heavy fermion metals, Phys. Rep. 492(2-3), 31 (2010)
https://doi.org/10.1016/j.physrep.2010.03.001
|
4 |
M. Ya. Amusia, K. G. Popov, V. R. Shaginyan, and W. A. Stephanowich, Theory of Heavy-Fermion Compounds- Theory of Strongly Correlated Fermi-Systems, Springer-Verlag, 2015
|
5 |
N. Oeschler, S. Hartmann, A. Pikul, C. Krellner, C. Geibel, and F. Steglich, Low-temperature specific heat of YbRh2Si2, Physica B 403(5-9), 1254 (2008)
https://doi.org/10.1016/j.physb.2007.10.119
|
6 |
V. R. Shaginyan, M. Ya. Amusia, and K. G. Popov, Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay, Phys. Lett. A 373(26), 2281 (2009)
https://doi.org/10.1016/j.physleta.2009.04.046
|
7 |
K. S. Kim and C. Pépin, Thermopower as a signature of quantum criticality in heavy fermions, Phys. Rev. B 81(20), 205108 (2010)
https://doi.org/10.1103/PhysRevB.81.205108
|
8 |
K. S. Kim and C. Pépin, Thermopower as a fingerprint of the Kondo breakdown quantum critical point, Phys. Rev. B 83(7), 073104 (2011)
https://doi.org/10.1103/PhysRevB.83.073104
|
9 |
A. A. Abrikosov, Fundamentals of the Theory of Metals, Amsterdam: North-Holland, 1988
|
10 |
E. M. Lifshitz, L. D. Landau, and L. P. Pitaevskii, Electrodynamics of Continuous Media, New-York: Elsevier, 1984
|
11 |
K. Behnia, D. Jaccard, and J. Flouquet, On the thermoelectricity of correlated electrons in the zero-temperature limit, J. Phys.: Condens. Matter 16(28), 5187 (2004)
https://doi.org/10.1088/0953-8984/16/28/037
|
12 |
K. Miyake and H. Kohno, Theory of quasi-universal ratio of seebeck coefficient to specific heat in zero-temperature limit in correlated metals, J. Phys. Soc. Jpn. 74(1), 254 (2005)
https://doi.org/10.1143/JPSJ.74.254
|
13 |
V. Zlatić, R. Monnier, J. K. Freericks, and K. W. Becker, Relationship between the thermopower and entropy of strongly correlated electron systems, Phys. Rev. B 76(8), 085122 (2007)
https://doi.org/10.1103/PhysRevB.76.085122
|
14 |
V. A. Khodel and V. R. Shaginyan, Superfluidity in system with fermion condensate, JETP Lett. 51(9), 553 (1990)
|
15 |
P. Nozières, Properties of Fermi liquids with a finite range interaction, J. Phys. I France 2(4), 443 (1992)
|
16 |
V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, New approach in the microscopic Fermi systems theory, Phys. Rep. 249(1-2), 1 (1994)
https://doi.org/10.1016/0370-1573(94)00059-X
|
17 |
G. E. Volovik, A new class of normal Fermi liquids, JETP Lett. 53(4), 222 (1991)
|
18 |
G. E. Volovik, From Standard Model of particle physics to room-temperature superconductivity, Phys. Scr. T164, 014014 (2015)
https://doi.org/10.1088/0031-8949/2015/T164/014014
|
19 |
L. D. Landau, Theory of Fermi liquid, Sov. Phys. JETP 30(6), 920 (1956)
|
20 |
P. Limelette, W. Saulquin, H. Muguerra, and D. Grebille, From quantum criticality to enhanced thermopower in strongly correlated layered cobalt oxide, Phys. Rev. B 81(11), 115113 (2010)
https://doi.org/10.1103/PhysRevB.81.115113
|
21 |
S. Hartmann, N. Oeschler, C. Krellner, C. Geibel, S. Paschen, and F. Steglich, Thermopower evidence for an abrupt Fermi surface change at the quantum critical point of YbRh2Si2, Phys. Rev. Lett. 104(9), 096401 (2010)
https://doi.org/10.1103/PhysRevLett.104.096401
|
22 |
S. Friedemann, S. Wirth, S. Kirchner, Q. Si, S. Hartmann, C. Krellner, C. Geibel, T. Westerkamp, M. Brando, and F. Steglich, Break up of heavy fermions at an antiferromagnetic instability, J. Phys. Soc. Jpn. 80(10), SA002 (2011)
https://doi.org/10.1143/JPSJS.80SA.SA002
|
23 |
P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich, Magnetic-field induced quantum critical point in YbRh2Si2, Phys. Rev. Lett. 89(5), 056402 (2002)
https://doi.org/10.1103/PhysRevLett.89.056402
|
24 |
A. Mokashi, S. Li, B. Wen, S. V. Kravchenko, A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik, Critical behavior of a strongly interacting 2D electron system, Phys. Rev. Lett. 109(9), 096405 (2012)
https://doi.org/10.1103/PhysRevLett.109.096405
|
25 |
Y. Machida, K. Tomokuni, C. Ogura, K. Izawa, K. Kuga, S. Nakatsuji, G. Lapertot, G. Knebel, J. P. Brison, and J. Flouquet, Thermoelectric response near a quantum critical point of YbAlB4 and YbRh2Si2: A comparative study, Phys. Rev. Lett. 109(15), 156405 (2012)
https://doi.org/10.1103/PhysRevLett.109.156405
|
26 |
S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich, P. Coleman, and Q. Si, Hall-effect evolution across a heavy-fermion quantum critical point, Nature 432(7019), 881 (2004)
https://doi.org/10.1038/nature03129
|
27 |
U. Köhler, N. Oeschler, F. Steglich, S. Maquilon, and Z. Fisk, Energy scales of Lu1-xYbxRh2Si2 by means of thermopower investigations, Phys. Rev. B 77(10), 104412 (2008)
https://doi.org/10.1103/PhysRevB.77.104412
|
28 |
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Magnetic field dependence of the residual resistivity of the heavy-fermion metal CeCoIn5, Phys. Rev. B 86(8), 085147 (2012)
https://doi.org/10.1103/PhysRevB.86.085147
|
29 |
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Nature of the quantum critical point as disclosed by extraordinary behavior of magnetotransport and the Lorentz number in the heavy-fermion metal YbRh2Si2, JETP Lett. 96(6), 397 (2012)
https://doi.org/10.1134/S0021364012180105
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|