Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (2) : 117102    https://doi.org/10.1007/s11467-015-0536-3
RESEARCH ARTICLE
Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2
V. R. Shaginyan1,2,*(),A. Z. Msezane2,G. S. Japaridze2,K. G. Popov3,4,J. W. Clark5,6,V. A. Khodel5,7
1. Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, 188300, Russia
2. Clark Atlanta University, Atlanta, GA 30314, USA
3. Komi Science Center, Ural Division, RAS, Syktyvkar, 167982, Russia
4. Department of Physics, St. Petersburg State University, Russia
5. McDonnell Center for the Space Sciences & Department of Physics, Washington University, St. Louis, MO 63130, USA
6. Centro de Ciências Matemáticas, Universidade de Madeira, 9000-390 Funchal, Madeira, Portugal
7. Russian Research Center Kurchatov Institute, Moscow, 123182, Russia
 Download: PDF(447 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We reveal and explain the scaling behavior of the thermopower S/T exhibited by the archetypal heavy-fermion (HF) metal YbRh2Si2 under the application of magnetic field B at temperature T. We show that the same scaling is demonstrated by different HF compounds such as β-YbAlB4 and the strongly correlated layered cobalt oxide [BiBa0.66K0.36O2]CoO2. Using YbRh2Si2 as an example, we demonstrate that the scaling behavior of S/T is violated at the antiferromagnetic phase transition, while both the residual resistivity ρ0 and the density of states, N, experience jumps at the phase transition, causing the thermopower to make two jumps and change its sign. Our elucidation is based on flattening of the single-particle spectrum that profoundly affects ρ0 and N. To depict the main features of the S/T behavior, we construct a T –B schematic phase diagram of YbRh2Si2. Our calculated S/T for the HF compounds are in good agreement with experimental facts and support our observations.

Keywords thermoelectric and thermomagnetic effects      quantum phase transition      flat bands      non-Fermi-liquid states      strongly correlated electron systems      heavy fermions     
Corresponding Author(s): V. R. Shaginyan   
Online First Date: 25 December 2015    Issue Date: 29 April 2016
 Cite this article:   
V. R. Shaginyan,A. Z. Msezane,G. S. Japaridze, et al. Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2[J]. Front. Phys. , 2016, 11(2): 117102.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0536-3
https://academic.hep.com.cn/fop/EN/Y2016/V11/I2/117102
1 P. Coleman, C. Pèpin, Q. Si, and R. Ramazashvili, How do Fermi liquids get heavy and die? J. Phys.: Condens. Matter 13(35), R723 (2001)
https://doi.org/10.1088/0953-8984/13/35/202
2 H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007)
https://doi.org/10.1103/RevModPhys.79.1015
3 V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Scaling behavior of heavy fermion metals, Phys. Rep. 492(2-3), 31 (2010)
https://doi.org/10.1016/j.physrep.2010.03.001
4 M. Ya. Amusia, K. G. Popov, V. R. Shaginyan, and W. A. Stephanowich, Theory of Heavy-Fermion Compounds- Theory of Strongly Correlated Fermi-Systems, Springer-Verlag, 2015
5 N. Oeschler, S. Hartmann, A. Pikul, C. Krellner, C. Geibel, and F. Steglich, Low-temperature specific heat of YbRh2Si2, Physica B 403(5-9), 1254 (2008)
https://doi.org/10.1016/j.physb.2007.10.119
6 V. R. Shaginyan, M. Ya. Amusia, and K. G. Popov, Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay, Phys. Lett. A 373(26), 2281 (2009)
https://doi.org/10.1016/j.physleta.2009.04.046
7 K. S. Kim and C. Pépin, Thermopower as a signature of quantum criticality in heavy fermions, Phys. Rev. B 81(20), 205108 (2010)
https://doi.org/10.1103/PhysRevB.81.205108
8 K. S. Kim and C. Pépin, Thermopower as a fingerprint of the Kondo breakdown quantum critical point, Phys. Rev. B 83(7), 073104 (2011)
https://doi.org/10.1103/PhysRevB.83.073104
9 A. A. Abrikosov, Fundamentals of the Theory of Metals, Amsterdam: North-Holland, 1988
10 E. M. Lifshitz, L. D. Landau, and L. P. Pitaevskii, Electrodynamics of Continuous Media, New-York: Elsevier, 1984
11 K. Behnia, D. Jaccard, and J. Flouquet, On the thermoelectricity of correlated electrons in the zero-temperature limit, J. Phys.: Condens. Matter 16(28), 5187 (2004)
https://doi.org/10.1088/0953-8984/16/28/037
12 K. Miyake and H. Kohno, Theory of quasi-universal ratio of seebeck coefficient to specific heat in zero-temperature limit in correlated metals, J. Phys. Soc. Jpn. 74(1), 254 (2005)
https://doi.org/10.1143/JPSJ.74.254
13 V. Zlatić, R. Monnier, J. K. Freericks, and K. W. Becker, Relationship between the thermopower and entropy of strongly correlated electron systems, Phys. Rev. B 76(8), 085122 (2007)
https://doi.org/10.1103/PhysRevB.76.085122
14 V. A. Khodel and V. R. Shaginyan, Superfluidity in system with fermion condensate, JETP Lett. 51(9), 553 (1990)
15 P. Nozières, Properties of Fermi liquids with a finite range interaction, J. Phys. I France 2(4), 443 (1992)
16 V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, New approach in the microscopic Fermi systems theory, Phys. Rep. 249(1-2), 1 (1994)
https://doi.org/10.1016/0370-1573(94)00059-X
17 G. E. Volovik, A new class of normal Fermi liquids, JETP Lett. 53(4), 222 (1991)
18 G. E. Volovik, From Standard Model of particle physics to room-temperature superconductivity, Phys. Scr. T164, 014014 (2015)
https://doi.org/10.1088/0031-8949/2015/T164/014014
19 L. D. Landau, Theory of Fermi liquid, Sov. Phys. JETP 30(6), 920 (1956)
20 P. Limelette, W. Saulquin, H. Muguerra, and D. Grebille, From quantum criticality to enhanced thermopower in strongly correlated layered cobalt oxide, Phys. Rev. B 81(11), 115113 (2010)
https://doi.org/10.1103/PhysRevB.81.115113
21 S. Hartmann, N. Oeschler, C. Krellner, C. Geibel, S. Paschen, and F. Steglich, Thermopower evidence for an abrupt Fermi surface change at the quantum critical point of YbRh2Si2, Phys. Rev. Lett. 104(9), 096401 (2010)
https://doi.org/10.1103/PhysRevLett.104.096401
22 S. Friedemann, S. Wirth, S. Kirchner, Q. Si, S. Hartmann, C. Krellner, C. Geibel, T. Westerkamp, M. Brando, and F. Steglich, Break up of heavy fermions at an antiferromagnetic instability, J. Phys. Soc. Jpn. 80(10), SA002 (2011)
https://doi.org/10.1143/JPSJS.80SA.SA002
23 P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich, Magnetic-field induced quantum critical point in YbRh2Si2, Phys. Rev. Lett. 89(5), 056402 (2002)
https://doi.org/10.1103/PhysRevLett.89.056402
24 A. Mokashi, S. Li, B. Wen, S. V. Kravchenko, A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik, Critical behavior of a strongly interacting 2D electron system, Phys. Rev. Lett. 109(9), 096405 (2012)
https://doi.org/10.1103/PhysRevLett.109.096405
25 Y. Machida, K. Tomokuni, C. Ogura, K. Izawa, K. Kuga, S. Nakatsuji, G. Lapertot, G. Knebel, J. P. Brison, and J. Flouquet, Thermoelectric response near a quantum critical point of YbAlB4 and YbRh2Si2: A comparative study, Phys. Rev. Lett. 109(15), 156405 (2012)
https://doi.org/10.1103/PhysRevLett.109.156405
26 S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich, P. Coleman, and Q. Si, Hall-effect evolution across a heavy-fermion quantum critical point, Nature 432(7019), 881 (2004)
https://doi.org/10.1038/nature03129
27 U. Köhler, N. Oeschler, F. Steglich, S. Maquilon, and Z. Fisk, Energy scales of Lu1-xYbxRh2Si2 by means of thermopower investigations, Phys. Rev. B 77(10), 104412 (2008)
https://doi.org/10.1103/PhysRevB.77.104412
28 V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Magnetic field dependence of the residual resistivity of the heavy-fermion metal CeCoIn5, Phys. Rev. B 86(8), 085147 (2012)
https://doi.org/10.1103/PhysRevB.86.085147
29 V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Nature of the quantum critical point as disclosed by extraordinary behavior of magnetotransport and the Lorentz number in the heavy-fermion metal YbRh2Si2, JETP Lett. 96(6), 397 (2012)
https://doi.org/10.1134/S0021364012180105
[1] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[2] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[3] Zhi Lin, Wanli Liu. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices[J]. Front. Phys. , 2018, 13(5): 136402-.
[4] Kai-Tong Wang, Fuming Xu, Yanxia Xing, Hong-Kang Zhao. Evolution of individual quantum Hall edge states in the presence of disorder[J]. Front. Phys. , 2018, 13(4): 137306-.
[5] Zhi Lin, Jun Zhang, Ying Jiang. Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method[J]. Front. Phys. , 2018, 13(4): 136401-.
[6] Hai-Tao Cui (崔海涛),Xue-Xi Yi (衣学喜). Detecting ground-state degeneracy in many-body systems through qubit decoherence[J]. Front. Phys. , 2017, 12(1): 120304-.
[7] V. R. Shaginyan,A. Z. Msezane,G. S. Japaridze,K. G. Popov,V. A. Khodel. Strongly correlated Fermi systems as a new state of matter[J]. Front. Phys. , 2016, 11(5): 117103-.
[8] Bao An(保安),Chen Yao-Hua(陈耀华),Lin Heng-Fu(林恒福),Liu Hai-Di(刘海迪),Zhang Xiao-Zhong(章晓中). Quantum phase transitions in two-dimensional strongly correlated fermion systems[J]. Front. Phys. , 2015, 10(5): 106401-.
[9] Yao-hua Chen, Wei Wu, Guo-cai Liu, Hong-shuai Tao, Wu-ming Liu. Quantum phase transition of cold atoms trapped in optical lattices[J]. Front. Phys. , 2012, 7(2): 223-234.
[10] Shi-jian Gu. Entropy majorization, thermal adiabatic theorem, and quantum phase transitions[J]. Front. Phys. , 2012, 7(2): 244-251.
[11] Xin-hua PENG (彭新华), Dieter SUTER, . Spin qubits for quantum simulations [J]. Front. Phys. , 2010, 5(1): 1-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed