|
|
Strongly correlated Fermi systems as a new state of matter |
V. R. Shaginyan1,2( ),A. Z. Msezane2,G. S. Japaridze2,K. G. Popov3,V. A. Khodel4,5 |
1. Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, 188300, Russia 2. Clark Atlanta University, Atlanta, GA 30314, USA 3. Komi Science Center, Ural Division, RAS, Syktyvkar, 167982, Russia 4. Russian Research Centre Kurchatov Institute, Moscow, 123182, Russia 5. McDonnell Center for the Space Sciences & Department of Physics, Washington University, St. Louis, MO 63130, USA |
|
|
Abstract The aim of this review paper is to expose a new state of matter exhibited by strongly correlated Fermi systems represented by various heavy-fermion (HF) metals, two-dimensional liquids like 3He, compounds with quantum spin liquids, quasicrystals, and systems with one-dimensional quantum spin liquid. We name these various systems HF compounds, since they exhibit the behavior typical of HF metals. In HF compounds at zero temperature the unique phase transition, dubbed throughout as the fermion condensation quantum phase transition (FCQPT) can occur; this FCQPT creates flat bands which in turn lead to the specific state, known as the fermion condensate. Unlimited increase of the effective mass of quasiparticles signifies FCQPT; these quasiparticles determine the thermodynamic, transport and relaxation properties of HF compounds. Our discussion of numerous salient experimental data within the framework of FCQPT resolves the mystery of the new state of matter. Thus, FCQPT and the fermion condensation can be considered as the universal reason for the non-Fermi liquid behavior observed in various HF compounds. We show analytically and using arguments based completely on the experimental grounds that these systems exhibit universal scaling behavior of their thermodynamic, transport and relaxation properties. Therefore, the quantum physics of different HF compounds is universal, and emerges regardless of the microscopic structure of the compounds. This uniform behavior allows us to view it as the main characteristic of a new state of matter exhibited by HF compounds.
|
Keywords
quantum phase transition
flat bands
non-Fermi-liquid states
strongly correlated electron systems
quantum spin liquids
heavy fermions
quasicrystals
thermoelectric and thermomagnetic effects
scaling behavior
new state of matter
|
Corresponding Author(s):
V. R. Shaginyan
|
Issue Date: 17 October 2016
|
|
1 |
L. D. Landau, The theory of a Fermi liquid, Sov. Phys. JETP 3(6), 920 (1957)
|
2 |
L. D. Landau, On the theory of the Fermi liquid, Sov. Phys. JETP 8(1), 70 (1959)
|
3 |
E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2, Oxford: Pergamon Press, 1980
|
4 |
V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Scaling behavior of heavy-fermion metals, Phys. Rep. 492(2–3), 31 (2010)
https://doi.org/10.1016/j.physrep.2010.03.001
|
5 |
M. Ya. Amusia, K. G. Popov, V. R. Shaginyan, and W. A. Stephanowich, Theory of Heavy-Fermion Compounds, Solid-State Sciences182, Springer, Heidelberg, New York, Dordrecht, London, 2015
|
6 |
V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, New approach in the microscopic Fermi systems theory, Phys. Rep. 249(1–2), 1 (1994)
https://doi.org/10.1016/0370-1573(94)00059-X
|
7 |
V. R. Shaginyan, Universal behavior of heavy-fermion metals near a quantum critical point, JETP Lett. 79(6), 286 (2004)
https://doi.org/10.1134/1.1759411
|
8 |
I. Ya. Pomeranchuk, On the stability of a Fermi liquid, Sov. Phys. JETP 8(2), 361 (1959)
|
9 |
P. Noziéres, Properties of Fermi liquids with a finite range interaction, J. Phys. I France 2(4), 443 (1992)
|
10 |
A. Casey, H. Patel, J. Nyeki, B. P. Cowan, and J. J. Saunders, Strongly correlated two dimensional fluid 3He, Low Temp. Phys. 113(3), 293 (1998)
https://doi.org/10.1023/A:1022598600411
|
11 |
M. Neumann, J. Nyéki, B. Cowan, and J. Saunders, Bilayer 3He: A simple two-dimensional heavy-fermion system with quantum criticality, Science 317(5843), 1356 (2007)
https://doi.org/10.1126/science.1143607
|
12 |
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, and V. A. Stephanovich, Universal behavior of two-dimensional 3He at low temperatures, Phys. Rev. Lett. 100(9), 096406 (2008)
https://doi.org/10.1103/PhysRevLett.100.096406
|
13 |
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
https://doi.org/10.1103/PhysRev.136.B864
|
14 |
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
https://doi.org/10.1103/PhysRev.140.A1133
|
15 |
V. A. Khodel and V. R. Shaginyan, Superfluidity in system with fermion condensate, JETP Lett. 51(9), 553 (1990)
|
16 |
G. E. Volovik, A new class of normal Fermi liquids, JETP Lett. 53(4), 222 (1991)
|
17 |
G. E. Volovik, T. T. Heikkilá, and N. B. Kopnin, Flat bands in topological media, JETP Lett. 94(3), 252 (2011)
|
18 |
G. E. Volovik, From standard model of particle physics to room-temperature superconductivity, Phys. Scr. 215(T164), 014014 (2015)
https://doi.org/10.1088/0031-8949/2015/T164/014014
|
19 |
T. T. Heikkilá and G. E. Volovik, Flat bands as a route to high-temperature superconductivity in graphite, arxiv: 1504.05824, submitted as a chapter to the book on Basic Physics of functionalized Graphite
|
20 |
M. Ya. Amusia and V. R.Shaginyan, Fermion condensate as a new state of matter, Contrib. Plasma Phys. 53(10), 721 (2013)
https://doi.org/10.1002/ctpp.201310045
|
21 |
D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Fermi condensation near van Hove singularities within the Hubbard model on the triangular lattice, Phys. Rev. Lett. 112(7), 070403 (2014)
https://doi.org/10.1103/PhysRevLett.112.070403
|
22 |
M. V. Zverev, V. A. Khodel, V. R. Shaginyan, and M. Baldo, Critical experiments in the search for fermion condensation, JETP Lett. 65(11), 863 (1997)
https://doi.org/10.1134/1.567438
|
23 |
H. Löhneysen, Non-Fermi-liquid behaviour in the heavyfermion system CeCu1−xAux, J. Phys.: Condens. Matter 8(48), 9689 (1996)
https://doi.org/10.1088/0953-8984/8/48/003
|
24 |
V. R. Shaginyan, M. Ya. Amusia, and K. G. Popov, Behavior of the antiferromagnetic phase transition near the fermion condensation quantum phase transition in YbRh2Si2, Phys. Lett. A 374(4), 659 (2010)
https://doi.org/10.1016/j.physleta.2009.11.057
|
25 |
D. Lidsky, J. Shiraishi, Y. Hatsugai, and M. Kohmoto, Simple exactly solvable models of non-Fermi-liquids, Phys. Rev. B 57(3), 1340 (1998)
https://doi.org/10.1103/PhysRevB.57.1340
|
26 |
V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Robustness of the Van Hove Scenario for high-Tc superconductors, Phys. Rev. Lett. 89(7), 076401 (2002)
https://doi.org/10.1103/PhysRevLett.89.076401
|
27 |
S. S. Lee, Non-Fermi liquid from a charged black hole: A critical Fermi ball, Phys. Rev. D 79(8), 086006 (2009)
https://doi.org/10.1103/PhysRevD.79.086006
|
28 |
A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, Merging of Landau levels in a strongly-interacting two-dimensional electron system in silicon, Phys. Rev. Lett. 112(18), 186402 (2014)
https://doi.org/10.1103/PhysRevLett.112.186402
|
29 |
M. Yu. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.H. Huang, C. W. Liu, and S. V. Kravchenko, Indication of the fermion condensation in a strongly correlated electron system in SiGe/Si/SiGe quantum wells, arXiv: 1604.08527
|
30 |
V. A. Khodel, J. W. Clark, and M. V. Zverev, Topology of the Fermi surface beyond the quantum critical point, Phys. Rev. B 78(7), 075120 (2008)
https://doi.org/10.1103/PhysRevB.78.075120
|
31 |
S. A. Artamonov, V. R. Shaginyan, and Yu. G. Pogorelov, Ground-state instability in systems of strongly interacting fermions, JETP Lett. 68(12), 942 (1998)
https://doi.org/10.1134/1.567952
|
32 |
V. A. Khodel, Two scenarios of the quantum critical point, JETP Lett. 86(11), 721 (2008)
https://doi.org/10.1134/S0021364007230087
|
33 |
N. Oeschler, S. Hartmann, A. P. Pikul, C. Krellner, C. Geibel, and F. Steglich, Low-temperature specific heat of YbRh2Si2, Physica B 403(5–9), 1254 (2008)
https://doi.org/10.1016/j.physb.2007.10.119
|
34 |
V. R. Shaginyan, M. Ya. Amusia, and K. G. Popov, Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay, Phys. Lett. A 373(26), 2281 (2009)
https://doi.org/10.1016/j.physleta.2009.04.046
|
35 |
M. Brando, L. Pedrero, T. Westerkamp, C. Krellner, P. Gegenwart, C. Geibel, and F. Steglich, Magnetization study of the energy scales in YbRh2Si2 under chemical pressure, Phys. Status Solidi B 250(3), 485 (2013)
https://doi.org/10.1002/pssb.201200771
|
36 |
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Khodel, General properties of phase diagrams of heavy-fermion metals, Europhys. Lett. 106(3), 37001 (2014)
https://doi.org/10.1209/0295-5075/106/37001
|
37 |
D. Takahashi, S. Abe, H. Mizuno, D. A. Tayurskii, K. Matsumoto, H. Suzuki, and Y. Onuki, ac susceptibility and static magnetization measurements of CeRu2Si2 at small magnetic fields and ultralow temperatures, Phys. Rev. B 67(18), 180407 (2003)
https://doi.org/10.1103/PhysRevB.67.180407
|
38 |
A. W. Rost, S. A. Grigera, J. A. N. Bruin, R. S. Perry, D. Tian, S. Raghu, S. A. Kivelson, and A. P. Mackenzie, Thermodynamics of phase formation in the quantum critical metal Sr3Ru2O7, Proc. Natl. Acad. Sci. USA 108(40), 16549 (2011)
https://doi.org/10.1073/pnas.1112775108
|
39 |
A. V. Silhanek, N. Harrison, C. D. Batista, M. Jaime, A. Lacerda, H. Amitsuka, and J. A. Mydosh, Quantum critical 5f electrons avoid singularities in U(Ru; Rh)2Si2, Phys. Rev. Lett. 95(2), 026403 (2005)
https://doi.org/10.1103/PhysRevLett.95.026403
|
40 |
J. S. Kim, B. Andraka, G. Fraunberger, and G. R. Stewart, Specific heat in a magnetic field: A probe of the magnetic ground-state properties of heavy-fermion Ce(Ru2−xRhx)Si22−yGey, Phys. Rev. B 41(1), 541 (1990)
https://doi.org/10.1103/PhysRevB.41.541
|
41 |
V. R. Shaginyan, K. G. Popov, V. A. Stephanovich, V. I. Fomichev, and E. V. Kirichenko, High magnetic fields thermodynamics of heavy fermion metal YbRh2Si2, Europhys. Lett. 93(1), 17008 (2011)
https://doi.org/10.1209/0295-5075/93/17008
|
42 |
P. Gegenwart, Y. Tokiwa, T. Westerkamp, F. Weickert, J. Custers, J. Ferstl, C. Krellner, C. Geibel, P. Kerschl, K-H. Müller, and F. Steglich, High-field phase diagram of the heavy-fermion metal YbRh2Si2, New J. Phys. 8(9), 171 (2006)
https://doi.org/10.1088/1367-2630/8/9/171
|
43 |
H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007)
https://doi.org/10.1103/RevModPhys.79.1015
|
44 |
P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, How do Fermi liquids get heavy and die? J. Phys.: Condens. Matter 13(35), R723 (2001)
https://doi.org/10.1088/0953-8984/13/35/202
|
45 |
J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pépin, and P. Coleman, C. Pépin, and P. Coleman, The breakup of heavy electrons at a quantum critical point, Nature 424(6948), 524 (2003)
https://doi.org/10.1038/nature01774
|
46 |
S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich, P. Coleman, and Q. Si, Hall-effect evolution across a heavy fermion quantum critical point, Nature 432(7019), 881 (2004)
https://doi.org/10.1038/nature03129
|
47 |
Y. Yang, Z. Fisk, H-O. Lee, J. D. Thompson, and D. Pines, Scaling the Kondo lattice, Nature 454(7204), 611 (2008)
https://doi.org/10.1038/nature07157
|
48 |
Y. Yang and D. Pines, Universal behavior in heavyelectron materials, Phys. Rev. Lett. 100(9), 096404 (2008)
https://doi.org/10.1103/PhysRevLett.100.096404
|
49 |
Y. Yang and D. Pines, Quantum critical behavior in heavy electron materials, Proc. Natl. Acad. Sci. USA 111(23), 8398 (2014)
https://doi.org/10.1073/pnas.1407561111
|
50 |
P. Wölfle and E. Abrahams, Quasiparticles beyond the Fermi liquid and heavy fermion criticality, Phys. Rev. B 84(4), 041101(R) (2011)
|
51 |
E. Abrahams and P. Wölfle, Critical quasiparticle theory applied to heavy fermion metals near an antiferromagnetic quantum phase transition, Proc. Natl. Acad. Sci. USA 109(9), 3238 (2012)
https://doi.org/10.1073/pnas.1200346109
|
52 |
Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki, N. Horie, Y. Shimura, T. Sakakibara, A. H. Nevidomskyy, and P. Coleman, Quantum Criticality Without Tuning in the Mixed Valence Compound β-YbAlB4, Science 331(6015), 316 (2011)
https://doi.org/10.1126/science.1197531
|
53 |
T. Tomita, K. Kuga, Y. Uwatoko, P. Coleman, and S. Nakatsuji, Strange metal without magnetic criticality, Science 349(6247), 506 (2015)
https://doi.org/10.1126/science.1262054
|
54 |
K. Deguchi, S. Matsukawa, N. K. Sato, T. Hattori, K. Ishida, H. Takakura, and T. Ishimasa, Quantum critical state in a magnetic quasicrystal, Nat. Mater. 11(12), 1013 (2012)
https://doi.org/10.1038/nmat3432
|
55 |
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Khodel, Common quantum phase transition in quasicrystals and heavy-fermion metals,Phys. Rev. B 87(24), 245122 (2013)
https://doi.org/10.1103/PhysRevB.87.245122
|
56 |
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, V. A. Khodel, and M. V. Zverev, Topological basis for understanding the behavior of the heavy-fermion metal β-YbAlB4 under application of magnetic field and pressure, Phys. Rev. B 93(20), 205126 (2016)
https://doi.org/10.1103/PhysRevB.93.205126
|
57 |
K. S. Kim and C. Pépin, Thermopower as a signature of quantum criticality in heavy fermions, Phys. Rev. B 81(20), 205108 (2010)
https://doi.org/10.1103/PhysRevB.81.205108
|
58 |
K. S. Kim and C. Pépin, Thermopower as a fingerprint of the Kondo breakdown quantum critical point, Phys. Rev. B 83(7), 073104 (2011)
https://doi.org/10.1103/PhysRevB.83.073104
|
59 |
K. Behnia, D. Jaccard, and J. Flouquet, On the thermoelectricity of correlated electrons in the zerotemperature limit, J. Phys.: Condens. Matter 16(28), 5187 (2004)
https://doi.org/10.1088/0953-8984/16/28/037
|
60 |
K. Miyake and H. Kohno, Theory of quasi-universal ratio of Seebeck coefficient to specific heat in zerotemperature limit in correlated metals, J. Phys. Soc. Jpn. 74(1), 254 (2005)
https://doi.org/10.1143/JPSJ.74.254
|
61 |
V. ZlatićR. Monnier, J. K. Freericks, and K. W. Becker, Relationship between the thermopower and entropy of strongly correlated electron systems, Phys. Rev. B 76(8), 085122 (2007)
https://doi.org/10.1103/PhysRevB.76.085122
|
62 |
S. Hartmann, N. Oeschler, C. Krellner, C. Geibel, S. Paschen, and F. Steglich, Thermopower evidence for an abrupt Fermi surface change at the quantum critical point of YbRh2Si2, Phys. Rev. Lett. 104(9), 096401 (2010)
https://doi.org/10.1103/PhysRevLett.104.096401
|
63 |
S. Friedemann, S. Wirth, S. Kirchner, Q. Si, S. Hartmann, C. Krellner, C. Geibel, T. Westerkamp, M. Brando, and F. Steglich, Break up of heavy fermions at an antiferromagnetic instability, J. Phys. Soc. Jpn. 80(10 Suppl.A), SA002 (2011)
https://doi.org/10.1143/JPSJS.80SA.SA002
|
64 |
P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich, Magnetic-field induced quantum critical point in YbRh2Si2, Phys. Rev. Lett. 89(5), 056402 (2002)
https://doi.org/10.1103/PhysRevLett.89.056402
|
65 |
A. Mokashi, S. Li, B. Wen, S. V. Kravchenko, A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik, Critical behavior of a strongly interacting 2D electron system, Phys. Rev. Lett. 109(9), 096405 (2012)
https://doi.org/10.1103/PhysRevLett.109.096405
|
66 |
Y. Machida, K. Tomokuni, C. Ogura, K. Izawa, K. Kuga, S. Nakatsuji, G. Lapertot, G. Knebel, J. P. Brison, and J. Flouquet, Thermoelectric response near a quantum critical point of YbAlB4 and YbRh2Si2: A comparative study, Phys. Rev. Lett. 109(15), 156405 (2012)
https://doi.org/10.1103/PhysRevLett.109.156405
|
67 |
V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, J. W. Clark, and V. A. Khodel, Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2, Front. Phys. 11(2), 117102 (2016)
https://doi.org/10.1007/s11467-015-0536-3
|
68 |
P. Limelette, W. Saulquin, H. Muguerra, and D. Grebille, From quantum criticality to enhanced thermopower in strongly correlated layered cobalt oxide, Phys. Rev. B 81(11), 115113 (2010)
https://doi.org/10.1103/PhysRevB.81.115113
|
69 |
T. H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-Rivera, C. Broholm, and Y. S. Lee, Fractionalized excitations in the spin-liquid state of a kagomelattice antiferromagnet, Nature 492(7429), 406 (2012)
https://doi.org/10.1038/nature11659
|
70 |
P. Mendels and F. Bert, Quantum kagome antiferromagnet ZnCu3(OH)6Cl2, J. Phys. Soc. Jpn. 79(1), 011001 (2010)
https://doi.org/10.1143/JPSJ.79.011001
|
71 |
D. Green, L. Santos, and C. Chamon, Isolated flat bands and spin-1 conical bands in two-dimensional lattices, Phys. Rev. B 82(7), 075104 (2010)
https://doi.org/10.1103/PhysRevB.82.075104
|
72 |
T. H. Han, S. Chu, and Y. S. Lee, Refining the spin hamiltonian in the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2 using single crystals, Phys. Rev. Lett. 108(15), 157202 (2012)
https://doi.org/10.1103/PhysRevLett.108.157202
|
73 |
M. A. de Vries, K. V. Kamenev, W. A. Kockelmann, J. Sanchez-Benitez, and A. Harrison, Magnetic ground state of an experimental S= 1/2 kagome antiferromagnet, Phys. Rev. Lett. 100(15), 157205 (2008)
https://doi.org/10.1103/PhysRevLett.100.157205
|
74 |
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Stephanovich, Identification of strongly correlated spin liquid in herbertsmithite, Europhys. Lett. 97(5), 56001 (2012)
https://doi.org/10.1209/0295-5075/97/56001
|
75 |
V. R. Shaginyan, A. Z. Msezane, and K. G. Popov, Thermodynamic properties of the kagome lattice in herbertsmithite, Phys. Rev. B 84(6), 060401(R) (2011)
|
76 |
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, and V. A. Khodel, Scaling in dynamic susceptibility of herbertsmithite and heavy-fermion metals, Phys. Lett. A 376(38–39), 2622 (2012)
https://doi.org/10.1016/j.physleta.2012.07.005
|
77 |
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, and V. A. Stephanovich, Magnetic-field-induced reentrance of fermi-liquid behavior and spin-lattice relaxation rates in YbCu5−xAux, Phys. Lett. A 373(41), 3783 (2009)
https://doi.org/10.1016/j.physleta.2009.08.011
|
78 |
T. Imai, E. A. Nytko, B. M. Bartlett, M. P. Shores, and D. G. Nocera, 63Cu, 35Cl, and 1H NMR in the S= 1/2 kagome lattice ZnCu3(OH)6Cl2, Phys. Rev. Lett. 100(7), 077203 (2008)
https://doi.org/10.1103/PhysRevLett.100.077203
|
79 |
P. Carretta, R. Pasero, M. Giovannini, and C. Baines, Magnetic-field-induced crossover from non- Fermi to Fermi liquid at the quantum critical point of YbCu5−xAux, Phys. Rev. B 79(2), 020401 (2009)
https://doi.org/10.1103/PhysRevB.79.020401
|
80 |
P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Abrahams, and Q. Si, Multiple energy scales at a quantum critical point, Science 315(5814), 969 (2007)
https://doi.org/10.1126/science.1136020
|
81 |
J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y. Qiu, D. G. Nocera, and Y. S. Lee, Dynamic scaling in the susceptibility of the spin-1/2 kagome lattice antiferromagnet herbertsmithite, Phys. Rev. Lett. 104(14), 147201 (2010)
https://doi.org/10.1103/PhysRevLett.104.147201
|
82 |
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Khodel, Heat transport in magnetic fields by quantum spin liquid in the organic insulators EtMe3Sb[Pd(dmit)2]2 and κ-(BEDTTTF)2Cu2(CN)3, Europhys. Lett. 103(6), 67006 (2013)
https://doi.org/10.1209/0295-5075/103/67006
|
83 |
M. Yamashita, N. Nakata, Y. Senshu, M. Nagata, H. M. Yamamoto, R. Kato, T. Shibauchi, and Y. Matsuda, Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid, Science 328(5983), 1246 (2010)
https://doi.org/10.1126/science.1188200
|
84 |
M. Yamashita, T. Shibauchi, and Y. Matsuda, Thermaltransport studies of two-dimensional quantum spin liquids, ChemPhysChem 13(1), 74 (2012)
https://doi.org/10.1002/cphc.201100556
|
85 |
W. Knafo, S. Raymond, J. Flouquet, B. Fåk, M. A. Adams, P. Haen, F. Lapierre, S. Yates, and P. Lejay, Anomalous scaling behavior of the dynamical spin susceptibility of Ce0:925La0:075Ru2Si2, Phys. Rev. B 70(17), 174401 (2004)
https://doi.org/10.1103/PhysRevB.70.174401
|
86 |
B. Fåk, F. C. Coomer, A. Harrison, D. Visser, and M. E. Zhitomirsky, Spin-liquid behavior in a kagome antiferromagnet: Deuteronium jarosite, Europhys. Lett. 81(1), 17006 (2008)
https://doi.org/10.1209/0295-5075/81/17006
|
87 |
V. R. Shaginyan, K. G. Popov, and V. A. Khodel, Strongly correlated quantum spin liquid in herbertsmithite, Sov. Phys. JETP 116(5), 848 (2013)
https://doi.org/10.1134/S1063776113050245
|
88 |
D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53(20), 1951 (1984)
https://doi.org/10.1103/PhysRevLett.53.1951
|
89 |
T. Fujiwara, Theory of Electronic Structure in Quasicrystals126, Springer Series in Solid-State Sciences, Berlin: Springer-Verlag, 1999
|
90 |
R. Widmer, P. Gröning, M. Feuerbacher, and O. Gröning, Experimental signatures of spiky local density of states in quasicrystals, Phys. Rev. B 79(10), 104202 (2009)
https://doi.org/10.1103/PhysRevB.79.104202
|
91 |
G. T. de Laissardiere, Spiky density of states in large complex Al-Mn phases, Zeitschrift für Kristallographie- Crystalline Materials 224(1–2), 123 (2009)
|
92 |
Y. Kono, T. Sakakibara, C. P. Aoyama, C. Hotta, M. M. Turnbull, C. P. Landee, and Y. Takano, Field-induced quantum criticality and universal temperature dependence of the magnetization of a spin-1/2 Heisenberg chain, Phys. Rev. Lett. 114(3), 037202 (2015)
https://doi.org/10.1103/PhysRevLett.114.037202
|
93 |
V. A. Khodel, J. W. Clark, and M. V. Zverev, Superfluid phase transitions in dense neutron matter, Phys. Rev. Lett. 87(3), 031103 (2001)
https://doi.org/10.1103/PhysRevLett.87.031103
|
94 |
V. R. Shaginyan, G. S. Japaridze, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Baryon asymmetry resulting from a quantum phase transition in the early universe, Europhys. Lett. 94(6), 69001 (2011)
https://doi.org/10.1209/0295-5075/94/69001
|
95 |
V. R. Shaginyan, V. A. Stephanovich, K. G. Popov, and E. V. Kirichenko, Quasi-one-dimensional quantum spin liquid in the Cu(C4H4N2)(NO3)2 insulator, JETP Lett. 103(1), 30 (2016)
https://doi.org/10.1134/S0021364016010136
|
96 |
V. R. Shaginyan, V. A. Stephanovich, K. G. Popov, E. V. Kirichenko, and S. A. Artamonov, Magnetic quantum criticality in quasi-one-dimensional Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2, Ann. Phys. (Berlin), 528(6), 483 (2016)
https://doi.org/10.1002/andp.201500352
|
97 |
S. Tomonaga, Remarks on Bloch’s method of sound waves applied to many-fermion problems, Prog. Theor. Phys. 5(4), 544 (1950)
https://doi.org/10.1143/ptp/5.4.544
|
98 |
J. M. Luttinger, An exactly soluble model of a manyfermion system, Math. Phys. 4(9), 1154 (1963)
https://doi.org/10.1063/1.1704046
|
99 |
F. D. M. Haldane, Luttinger liquid theory of onedimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas, J. Phys. C 14(19), 2585 (1981)
|
100 |
F. D. M. Haldane, General relation of correlation exponents and spectral properties of one-dimensional fermi systems: Application to the anisotropic S= 1/2 Heisenberg chain, Phys. Rev. Lett. 45(16), 1358 (1980)
https://doi.org/10.1103/PhysRevLett.45.1358
|
101 |
A. V. Rozhkov, Fermionic quasiparticle representation of Tomonaga-Luttinger Hamiltonian, Eur. Phys. J. B 47(2), 193 (2005)
https://doi.org/10.1140/epjb/e2005-00312-3
|
102 |
A. V. Rozhkov, One-dimensional fermions with neither Luttinger-liquid nor Fermi-liquid behavior, Phys. Rev. Lett. 112(10), 106403 (2014)
https://doi.org/10.1103/PhysRevLett.112.106403
|
103 |
A. G. Lebed, Non-Fermi-liquid crossovers in a quasi onedimensional conductor in a tilted magnetic fleld, Phys. Rev. Lett. 115(15), 157001 (2015)
https://doi.org/10.1103/PhysRevLett.115.157001
|
104 |
Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki, Y. Shimura, T. Sakakibara, A. H. Nevidomskyy, and P. Coleman, T/B scaling of magnetization in the mixed valent compound β-YbAlB4, J. Phys. Conf. Ser. 391(1), 012041 (2012)
https://doi.org/10.1088/1742-6596/391/1/012041
|
105 |
M. Jeong and H. M. Rónnow, Quantum critical scaling for a Heisenberg spin-1/2 chain around saturation, Phys. Rev. B 92(18), 180409(R) (2015)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|