Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 63508    https://doi.org/10.1007/s11467-022-1201-2
RESEARCH ARTICLE
Equipartition of current in metallic armchair nanoribbon of graphene-based device
Hui Yang1, Junjie Zeng1, Sanyi You1, Yulei Han2(), Zhenhua Qiao1,3()
1. CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
2. Department of Physics, Fuzhou University, Fuzhou 350108, China
3. ICQD, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(5988 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We numerically investigate the mesoscopic electronic transport properties of Bernal-stacked bilayer/trilayer graphene connected with four monolayer graphene terminals. In armchair-terminated metallic bilayer graphene, we show that the current from one incoming terminal can be equally partitioned into other three outgoing terminals near the charge-neutrality point, and the conductance periodically fluctuates, which is independent of the ribbon width but influenced by the interlayer hopping energy. This finding can be clearly understood by using the wave function matching method, in which a quantitative relationship between the periodicity, Fermi energy, and interlayer hopping energy can be reached. Interestingly, for the trilayer case, when the Fermi energy is located around the charge-neutrality point, the fractional quantized conductance 1/(4e2h) can be achieved when system exceeds a critical length.

Keywords graphene      electronic transport      armchair nanoribbon     
Corresponding Author(s): Yulei Han,Zhenhua Qiao   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 28 September 2022
 Cite this article:   
Hui Yang,Junjie Zeng,Sanyi You, et al. Equipartition of current in metallic armchair nanoribbon of graphene-based device[J]. Front. Phys. , 2022, 17(6): 63508.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1201-2
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/63508
Fig.1  (a) Schematic diagram of the bilayer graphene device. The red part is central scattering region where exits interlayer hopping t =0.34 e V. The four blue regions are infinite monolayer graphene reservoirs and current is incident from terminal 1. (b) Graphene nanoribbon with armchair boundary. (c) Side view of ABA-stacked trilayer graphene.
Fig.2  Energy bands for graphene nanoribbon with open boundary only in y direction. The blue dispersion corresponds to monolayer graphene and the red part describes bilayer graphene bands. (a, b) Nanoribbon with width set to be 20 atoms terminates in armchair boundary. (c, d) Conductance as a function of central scattering length L for armchair terminated bilayer graphene with EF=0.339 eV and E F= 0.001eV. Dashed lines in (d) represent 0.25G 0 and 0.75G0.
Fig.3  Probability distribution of wave function as a function of bilayer graphene length x with fixed Fermi energy E F= 0.001eV. (a, b) The central region length are set to be 546a and 663a respectively.
Fig.4  (a) Ribbon band structure of ABA-stacked trilayer graphene. Conductance as a function of central scattering length L for armchair terminated trilayer graphene with (b) EF=0.001 eV, (c) EF=0.0001eV, (d) E F= 0.00001eV. The nanoribbon width is set to be 20 atoms. The dashed blue lines represent 0.25G0 and 0.75 G0.
  Fig.A1 (a, b) Conductance as a function of central scattering length L for armchair terminated bilayer graphene with E F= 1eV and E F= 0.4eV.
  Fig.A2 Energy bands for graphene nanoribbon with open boundary only in y direction. The blue dispersion corresponds to monolayer graphene and the red part describes bilayer graphene bands. (a, b) Nanoribbon with width set to be 20 atoms terminates in zigzag boundary. (c, d) Conductance as a function of central scattering length L for zigzag terminated bilayer graphene with width 20 and 40 atoms.
Fig.5  This is the result obtained from the continuous model. The Fermi energy is 0.001 eV. The maximum value of transmission probability T 1i ( i=2, 3, 4) is still around 0.25.
1 Xu M., Liang T., Shi M., Chen H.. Graphene-like two-dimensional materials. Chem. Rev. , 2013, 113( 5): 3766
https://doi.org/10.1021/cr300263a
2 H. Wang Q., Kalantar-Zadeh K., Kis A., N. Coleman J., S. Strano M.. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. , 2012, 7( 11): 699
https://doi.org/10.1038/nnano.2012.193
3 S. Novoselov K., Jiang D., Schedin F., J. Booth T., V. Khotkevich V., V. Morozov S., K. Geim A.. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA , 2005, 102( 30): 10451
https://doi.org/10.1073/pnas.0502848102
4 L. Han Y., H. Qiao Z.. Universal conductance fluctuations in Sierpinski carpets. Front. Phys. , 2019, 14( 6): 63603
https://doi.org/10.1007/s11467-019-0919-y
5 Zhou S., You L., Zhou H., Pu Y., Gui Z., Wang J.. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys. , 2021, 16( 1): 13301
https://doi.org/10.1007/s11467-020-0986-0
6 Z. Lu H., Q. Shen S.. Quantum transport in topological semimetals under magnetic fields. Front. Phys. , 2017, 12( 3): 127201
https://doi.org/10.1007/s11467-016-0609-y
7 Dong H., Guo S., Duan Y., Huang F., Xu W., Zhang J.. Electronic and optical properties of single-layer MoS2. Front. Phys. , 2018, 13( 4): 137307
https://doi.org/10.1007/s11467-018-0797-8
8 R. Hu X., M. Zheng J., Y. Ren Z.. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation. Front. Phys. , 2018, 13( 2): 137302
https://doi.org/10.1007/s11467-017-0736-0
9 Ren Y., Qiao Z., Niu Q.. Topological phases in two-dimensional materials: A review. Rep. Prog. Phys. , 2016, 79( 6): 066501
https://doi.org/10.1088/0034-4885/79/6/066501
10 T. Bi X., Jung J., H. Qiao Z.. Role of geometry and topological defects in the one-dimensional zero-line modes of graphene. Phys. Rev. B , 2015, 92( 23): 235421
https://doi.org/10.1103/PhysRevB.92.235421
11 Wang K., F. Ren Y., Z. Deng X., A. Yang S., Jung J., H. Qiao Z.. Gate-tunable current partition in graphene-based topological zero lines. Phys. Rev. B , 2017, 95( 24): 245420
https://doi.org/10.1103/PhysRevB.95.245420
12 H. Qiao Z., Jung J., Lin C., F. Ren Y., H. MacDonald A., Niu Q.. Current partition at topological channel intersections. Phys. Rev. Lett. , 2014, 112( 20): 206601
https://doi.org/10.1103/PhysRevLett.112.206601
13 H. Qiao Z., Jung J., Niu Q., H. MacDonald A.. Electronic highways in bilayer graphene. Nano Lett. , 2011, 11( 8): 3453
https://doi.org/10.1021/nl201941f
14 Hou T., Chen G., K. Tse W., Zeng C., Qiao Z.. Topological zero-line modes in folded bilayer graphene. Phys. Rev. B , 2018, 98( 24): 245417
https://doi.org/10.1103/PhysRevB.98.245417
15 Y. Peng X., Ahuja R.. Symmetry breaking induced bandgap in epitaxial graphene layers on SiC. Nano Lett. , 2008, 8( 12): 4464
https://doi.org/10.1021/nl802409q
16 Giovannetti G., A. Khomyakov P., Brocks G., J. Kelly P., van den Brink J.. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B , 2007, 76( 7): 073103
https://doi.org/10.1103/PhysRevB.76.073103
17 Yao W., A. Yang S., Niu Q.. Edge states in graphene: From gapped flat-band to gapless chiral modes. Phys. Rev. Lett. , 2009, 102( 9): 096801
https://doi.org/10.1103/PhysRevLett.102.096801
18 S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666
https://doi.org/10.1126/science.1102896
19 Zhang Y., W. Tan Y., L. Stormer H., Kim P.. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature , 2005, 438( 7065): 201
https://doi.org/10.1038/nature04235
20 W. J. Beenakker C.. Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. , 2008, 80( 4): 1337
https://doi.org/10.1103/RevModPhys.80.1337
21 H. Castro Neto A., Guinea F., M. R. Peres N., S. Novoselov K., K. Geim A.. The electronic properties of graphene. Rev. Mod. Phys. , 2009, 81( 1): 109
https://doi.org/10.1103/RevModPhys.81.109
22 Y. Zhou S., H. Gweon G., V. Fedorov A., N. First P., A. de Heer W., H. Lee D., Guinea F., H. Castro Neto A., Lanzara A.. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. , 2007, 6( 10): 770
https://doi.org/10.1038/nmat2003
23 M. M. Habib K., S. Sylvia S., Ge S., Neupane M., K. Lake R.. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite. Appl. Phys. Lett. , 2013, 103( 24): 243114
https://doi.org/10.1063/1.4841415
24 Ge S., M. M. Habib K., De A., Barlas Y., Wickramaratne D., R. Neupane M., K. Lake R.. Interlayer transport through a graphene/rotated boron nitride/graphene heterostructure. Phys. Rev. B , 2017, 95( 4): 045303
https://doi.org/10.1103/PhysRevB.95.045303
25 Xia F., B. Farmer D., Lin Y., Avouris P.. Graphene field-effect transistors with high On/Off current ratio and large transport band gap at room temperature. Nano Lett. , 2010, 10( 2): 715
https://doi.org/10.1021/nl9039636
26 Kim Y., Yun H., G. Nam S., Son M., S. Lee D., C. Kim D., Seo S., C. Choi H., J. Lee H., W. Lee S., S. Kim J.. Breakdown of the interlayer coherence in twisted bilayer graphene. Phys. Rev. Lett. , 2013, 110( 9): 096602
https://doi.org/10.1103/PhysRevLett.110.096602
27 McCann E., Koshino M.. The electronic properties of bilayer graphene. Rep. Prog. Phys. , 2013, 76( 5): 056503
https://doi.org/10.1088/0034-4885/76/5/056503
28 Wang K., Hou T., F. Ren Y., H. Qiao Z.. Enhanced robustness of zero-line modes in graphene via magnetic field. Front. Phys. , 2019, 14( 2): 23501
https://doi.org/10.1007/s11467-018-0869-9
29 Wang R., Ren X., Yan Z., J. Jiang L., E. I. Sha W., C. Shan G.. Graphene based functional devices: A short review. Front. Phys. , 2019, 14( 1): 13603
https://doi.org/10.1007/s11467-018-0859-y
30 Z. Deng X., L. Yang H., F. Qi S., H. Xu X., H. Qiao Z.. Quantum anomalous Hall effect and giant Rashba spin−orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms. Front. Phys. , 2018, 13( 5): 137308
https://doi.org/10.1007/s11467-018-0806-y
31 J. Yin L., K. Bai K., X. Wang W., Y. Li S., Zhang Y., He L.. Landau quantization of Dirac fermions in graphene and its multilayers. Front. Phys. , 2017, 12( 4): 127208
https://doi.org/10.1007/s11467-017-0655-0
32 L. Ge J., R. Wu T., Gao M., B. Bai Z., Cao L., F. Wang X., Y. Qin Y., Q. Song F.. Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction. Front. Phys. , 2017, 12( 4): 127210
https://doi.org/10.1007/s11467-017-0677-7
33 Yan W., Y. Li S., J. Yin L., B. Qiao J., C. Nie J., He L.. Spatially resolving unconventional interface Landau quantization in a graphene monolayer-bilayer planar junction. Phys. Rev. B , 2016, 93( 19): 195408
https://doi.org/10.1103/PhysRevB.93.195408
34 J. Yin L., K. Bai K., X. Wang W., Y. Li S., Zhang Y., He L.. Landau quantization of Dirac fermions in graphene and its multilayers. Front. Phys. , 2017, 12( 4): 127208
https://doi.org/10.1007/s11467-017-0655-0
35 Cho S., F. Chen Y., S. Fuhrer M.. Gate-tunable graphene spin valve. Appl. Phys. Lett. , 2007, 91( 12): 123105
https://doi.org/10.1063/1.2784934
36 T. Zhang Y., H. Qiao Z., F. Sun Q.. Detecting zero-line mode in bilayer graphene via the quantum Hall effect. Phys. Rev. B , 2013, 87( 23): 235405
https://doi.org/10.1103/PhysRevB.87.235405
37 Sui M., Chen G., Ma L., Y. Shan W., Tian D., Watanabe K., Taniguchi T., Jin X., Yao W., Xiao D., Zhang Y.. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys. , 2015, 11( 12): 1027
https://doi.org/10.1038/nphys3485
38 Meng L., D. Chu Z., Zhang Y., Y. Yang J., F. Dou R., C. Nie J., He L.. Enhanced intervalley scattering of twisted bilayer graphene by periodic AB stacked atoms. Phys. Rev. B , 2012, 85( 23): 235453
https://doi.org/10.1103/PhysRevB.85.235453
39 Ryzhii V., Otsuji T., Ryzhii M., Ya. Aleshkin V., A. Dubinov A., Mitin V., S. Shur M.. Vertical electron transport in van der Waals heterostructures with graphene layers. J. Appl. Phys. , 2015, 117( 15): 154504
https://doi.org/10.1063/1.4918313
40 W. González J., Santos H., Pacheco M., Chico L., Brey L.. Electronic transport through bilayer graphene flakes. Phys. Rev. B , 2010, 81( 19): 195406
https://doi.org/10.1103/PhysRevB.81.195406
41 Das Sarma S., Adam S., H. Hwang E., Rossi E.. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. , 2011, 83( 2): 407
https://doi.org/10.1103/RevModPhys.83.407
42 Nakanishi T., Koshino M., Ando T.. Transmission through a boundary between monolayer and bilayer graphene. Phys. Rev. B , 2010, 82( 12): 125428
https://doi.org/10.1103/PhysRevB.82.125428
43 Brey L., A. Fertig H.. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B , 2006, 73( 23): 235411
https://doi.org/10.1103/PhysRevB.73.235411
44 Snyman I., W. J. Beenakker C.. Ballistic transmission through a graphene bilayer. Phys. Rev. B , 2007, 75( 4): 045322
https://doi.org/10.1103/PhysRevB.75.045322
45 M. Abdullah H., Van Duppen B., Zarenia M., Bahlouli H., M. Peeters F.. Quantum transport across van der Waals domain walls in bilayer graphene. J. Phys.: Condens. Matter , 2017, 29( 42): 425303
https://doi.org/10.1088/1361-648X/aa81a8
46 M. Abdullah H., R. da Costa D., Bahlouli H., Chaves A., M. Peeters F., Van Duppen B.. Electron collimation at van der Waals domain walls in bilayer graphene. Phys. Rev. B , 2019, 100( 4): 045137
https://doi.org/10.1103/PhysRevB.100.045137
47 W. González J., Santos H., Prada E., Brey L., Chico L.. Gate-controlled conductance through bilayer graphene ribbons. Phys. Rev. B , 2011, 83( 20): 205402
https://doi.org/10.1103/PhysRevB.83.205402
48 Zheng H., F. Wang Z., Luo T., W. Shi Q., Chen J.. Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B , 2007, 75( 16): 165414
https://doi.org/10.1103/PhysRevB.75.165414
49 Santos H., Ayuela A., Jaskólski W., Pelc M., Chico L.. Interface states in carbon nanotube junctions: Rolling up graphene. Phys. Rev. B , 2009, 80( 3): 035436
https://doi.org/10.1103/PhysRevB.80.035436
50 Berger C., Song Z., Li X., Wu X., Brown N., Naud C., Mayou D., Li T., Hass J., N. Marchenkov A., H. Conrad E., N. First P., A. de Heer W.. Electronic confinement and coherence in patterned epitaxial graphene. Science , 2006, 312( 5777): 1191
https://doi.org/10.1126/science.1125925
51 K. Geim A., S. Novoselov K.. The rise of graphene. Nat. Mater. , 2007, 6( 3): 183
https://doi.org/10.1038/nmat1849
52 Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., K. Banerjee S., Colombo L., S. Ruoff R.. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science , 2009, 324( 5932): 1312
https://doi.org/10.1126/science.1171245
53 S. Kim K., Zhao Y., Jang H., Y. Lee S., M. Kim J., S. Kim K., H. Ahn J., Kim P., Y. Choi J., H. Hong B.. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature , 2009, 457( 7230): 706
https://doi.org/10.1038/nature07719
54 X. Wang W. Zhou M. Li X. Y. Li S. Wu X. Duan W. He L., Energy gaps of atomically precise armchair graphene sidewall nanoribbons, Phys. Rev. B 93, 241403(R) ( 2016)
55 Kunstmann J., Özdogan C., Quandt A., Fehske H.. Stability of edge states and edge magnetism in graphene nanoribbons. Phys. Rev. B , 2011, 83( 4): 045414
https://doi.org/10.1103/PhysRevB.83.045414
56 Salemi L., Lherbier A., C. Charlier J.. Spin-dependent properties in zigzag graphene nanoribbons with phenyl-edge defects. Phys. Rev. B , 2018, 98( 21): 214204
https://doi.org/10.1103/PhysRevB.98.214204
57 Datta S., Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge UK, 1997
[1] Bo Wen, Da-Ning Luo, Ling-Long Zhang, Xiao-Lin Li, Xin Wang, Liang-Liang Huang, Xi Zhang, Dong-Feng Diao. Excited state biexcitons in monolayer WSe2 driven by vertically grown graphene nanosheets with high-density electron trapping edges[J]. Front. Phys. , 2023, 18(3): 33306-.
[2] Qingyun Zhou, Yusheng Hou, Tianshu Lai. Electronic properties and tunability in graphene/3D-InP mixed-dimensional van der Waals heterostructure[J]. Front. Phys. , 2023, 18(2): 23301-.
[3] Yibo Wang, Siqi Jiang, Jingkuan Xiao, Xiaofan Cai, Di Zhang, Ping Wang, Guodong Ma, Yaqing Han, Jiabei Huang, Kenji Watanabe, Takashi Taniguchi, Yanfeng Guo, Lei Wang, Alexander S. Mayorov, Geliang Yu. Ferroelectricity in hBN intercalated double-layer graphene[J]. Front. Phys. , 2022, 17(4): 43504-.
[4] Lu Wen, Yijun Liu, Guoyu Luo, Xinyu Lv, Kaiyuan Wang, Wang Zhu, Lei Wang, Zhiqiang Li. Theoretical study of broadband near-field optical spectrum of twisted bilayer graphene[J]. Front. Phys. , 2022, 17(4): 43503-.
[5] Zhen-Bing Dai, Gui Cen, Zhibin Zhang, Xinyu Lv, Kaihui Liu, Zhiqiang Li. Near-field infrared response of graphene on copper substrate[J]. Front. Phys. , 2022, 17(4): 43502-.
[6] Si-Yu Li, Lin He. Recent progresses of quantum confinement in graphene quantum dots[J]. Front. Phys. , 2022, 17(3): 33201-.
[7] Tianyi Wang, Ani Dong, Xiaoli Zhang, Rosalie K. Hocking, Chenghua Sun. Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction[J]. Front. Phys. , 2022, 17(2): 23501-.
[8] Guoyu Luo, Xinyu Lv, Lu Wen, Zhiqiang Li, Zhenbing Dai. Strain induced topological transitions in twisted double bilayer graphene[J]. Front. Phys. , 2022, 17(2): 23502-.
[9] Sa Yang, Ren-Long Zhou, Yang-Jun Huang. Surface plasmon resonance and field confinement in graphene nanoribbons in a nanocavity[J]. Front. Phys. , 2021, 16(4): 43504-.
[10] Yuan-Qiao Li, Tao Zhou. Impurity effect as a probe for the pairing symmetry of graphene-based superconductors[J]. Front. Phys. , 2021, 16(4): 43502-.
[11] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[12] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[13] Yu-Lei Han, Zhen-Hua Qiao. Universal conductance fluctuations in Sierpinski carpets[J]. Front. Phys. , 2019, 14(6): 63603-.
[14] Ke Wang, Tao Hou, Yafei Ren, Zhenhua Qiao. Enhanced robustness of zero-line modes in graphene via magnetic field[J]. Front. Phys. , 2019, 14(2): 23501-.
[15] Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review[J]. Front. Phys. , 2019, 14(1): 13603-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed