Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (4) : 43504    https://doi.org/10.1007/s11467-022-1175-0
RESEARCH ARTICLE
Ferroelectricity in hBN intercalated double-layer graphene
Yibo Wang1(), Siqi Jiang1, Jingkuan Xiao1, Xiaofan Cai1, Di Zhang1, Ping Wang1, Guodong Ma1, Yaqing Han1, Jiabei Huang1, Kenji Watanabe2, Takashi Taniguchi2, Yanfeng Guo4, Lei Wang1,3, Alexander S. Mayorov1(), Geliang Yu1,3()
1. National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
2. National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
3. Collaborative Innovation Centre of Advanced Microsctructures, Nanjing University, Nanjing 210093, China
4. School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
 Download: PDF(2904 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Van der Waals (vdW) assembly of two-dimensional materials has long been recognized as a powerful tool for creating unique systems with properties that cannot be found in natural compounds [Nature 499, 419 (2013)]. However, among the variety of vdW heterostructures and their various properties, only a few have revealed metallic and ferroelectric behaviour signatures [Sci. Adv. 5, eaax5080 (2019); Nature560, 336 (2018)]. Here we show ferroelectric semimetal made of double-gated double-layer graphene separated by an atomically thin crystal of hexagonal boron nitride. The structure demonstrates high room temperature mobility of the order of 10 m2·V−1·s−1 and exhibits ambipolar switching in response to the external electric field. The observed hysteresis is reversible and persists above room temperature. Our fabrication method expands the family of ferroelectric vdW compounds and offers a promising route for developing novel phase-changing devices. A possible microscopic model of ferroelectricity is discussed.

Keywords double-layer graphene      ferroelectric metal      intercalation      dry transfer      high-mobility     
Corresponding Author(s): Yibo Wang,Alexander S. Mayorov,Geliang Yu   
Issue Date: 17 June 2022
 Cite this article:   
Yibo Wang,Siqi Jiang,Jingkuan Xiao, et al. Ferroelectricity in hBN intercalated double-layer graphene[J]. Front. Phys. , 2022, 17(4): 43504.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1175-0
https://academic.hep.com.cn/fop/EN/Y2022/V17/I4/43504
Fig.1  Hexagonal boron nitride-separated quasi-twisted bilayer graphene. (a) Optical photograph of our Hall bar device. An encapsulated qTBG heterostructure is connected to metal leads (dull green) and endowed with gold top gate (bright green) and bottom silicon gate electrodes. (b) Schematic of the triple-layer structure. Two MLG layers are twisted by a small twist angle. (c) The schematic of the qTBG device with top and bottom gates. (d, e) The device’s resistivity measured as a function of Vbg and Vtg at 2.1 K for Vtg=0 V and Vbg=0 V, respectively.
Fig.2  Gate voltage sweeps with increasing maximum voltage. (a) Resistance as a function of Vbg for different maximum back gate voltage. The curves are shifted up for clarity. (b) Resistance as a function of Vtg for different maximum top gate voltage. The curves are shifted up for clarity. (c) Two scans from the image (b) shows the memory effect.
Fig.3  Ferroelectric hysteresis at 2.1 K. (a, b) The sample’s resistivity as a function of the back gate and top gate voltages for the forward (a) and backward (b) back gate voltage sweeps at fixed Vtg. Scattered data show the position of the maximum resistivity for a paraelectric phase. (c) The maximum of the resistivity for the forward and backward as a function of the top gate and back gate voltages. The dashed line is the best fit for the forward and backward sweep’s resistivity maxima in the linear ferroelectric regime. The blue and red squares show the maximum resistivity for a paraelectric phase. (d) Hall effect measured at B=0.5 T for forward (solid black curve) and backward (dashed black curve) sweeps as a function of back gate voltage at Vtg=0 V. The red curves show corresponding concentrations calculated from the Hall voltage. (e) Hall effect measured at B=0.5 T for the forward (solid black curve) and backward (dashed black curve) sweeps as a function of top gate voltage at Vbg=0 V. The red curves show corresponding concentrations calculated from the Hall voltage.
Fig.4  Transport properties at high temperatures. (a) The temperature dependence of the resistivity as a function of back gate voltage at Vtg=0 V for the forward (solid style) and backward sweeps (dashed style) for four selected temperatures. (b) The voltage difference between CNP positions of the backward and forward sweeps. The temperature changes from 2 K to 325 K. (c) The temperature dependence of the resistivity for the forward sweeps for different electron concentrations. The smallest resistivity is multiplied by 5. (d) The mobility of electron gas as a function of temperature measured at 3 ×1015 m?2, 6 ×1015 m?2 and 9 ×1015 m?2. The dashed lines are guides for the eye.
1 K. Geim A. , V. Grigorieva I. . Van der Waals heterostructures. Nature, 2013, 499 : 419
https://doi.org/10.1038/nature12385
2 Sharma P. X. Xiang F. F. Shao D. Zhang D. Y. Tsymbal E. R. Hamilton A. Seidel J., A room-temperature ferroelectric semimetal, Sci. Adv. 5, eaax5080 ( 2019)
3 Fei Z. , Zhao W. , A. Palomaki T. , Sun B. , K. Miller M. , Zhao Z. , Yan J. , Xu X. , H. Cobden D. . Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560 : 336
https://doi.org/10.1038/s41586-018-0336-3
4 Xi X. , Zhao L. , Wang Z. , Berger H. , Forró L. , Shan J. , F. Mak K. . Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotech., 2015, 10 : 765
https://doi.org/10.1038/nnano.2015.143
5 X. Zhou W. , Ariando A. . Review on ferroelectric/polar metals. Jpn. J. Appl. Phys., 2020, 59 : SI0802
https://doi.org/10.35848/1347-4065/ab8bbf
6 Cao Y. , Wang Z. , Y. Park S. , Yuan Y. , Liu X. , M. Nikitin S. , Akamatsu H. , Kareev M. , Middey S. , Meyers D. , Thompson P. , J. Ryan P. , Shafer P. , N’Diaye A. , Arenholz E. , Gopalan V. , Zhu Y. , M. Rabe K. , Chakhalian J. . Artificial two-dimensional polar metal at room temperature. Nat. Commun., 2018, 9 : 1547
https://doi.org/10.1038/s41467-018-03964-9
7 Shi Y. Guo Y. Wang X. J. Princep A. Khalyavin D. Manuel P. Michiue Y. Sato A. Tsuda K. Yu S. Arai M. Shirako Y. Akaogi M. Wang N. Yamaura K. T. Boothroyd A., A ferroelectric-like structural transition in a metal, Nat. Mater. 12, 1024 ( 2013)
8 Liu X. , Yang Y. , Hu T. , Zhao G. , Chen C. , Ren W. . Vertical ferroelectric switching by in-plane sliding of two-dimensional bilayer WTe2. Nanoscale, 2019, 11 : 18575
https://doi.org/10.1039/C9NR05404A
9 M. Si, A. K. Saha, S. Gao, G. Qiu, J. Qin, Y. Duan, J. Jian, C. Niu, H. Wang, W. Wu, S. K. Gupta, and P. D. Ye, A ferroelectric semiconductor field-effect transistor, Nat. Nanoelectron. 2, 580 (2019)
10 Wang L. , Mericp I. , Huang Y. , Gao Q. , Gao Y. , Tran H. , Taniguchi T. , Watanabe K. , M. Campos L. , A. Muller D. , Guo J. , Kim P. , Hone J. , L. Shepard K. , R. Dean C. . One-dimensional electrical contact to a two-dimensional material. Science, 2013, 342 : 614
https://doi.org/10.1126/science.1244358
11 R. Dean C. , F. Young A. , Meric I. , Lee C. , Wang L. , Sorgenfrei S. , Watanabe K. , Taniguchi T. , Kim P. , L. Shepard K. , Hone J. . Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol., 2010, 5 : 722
https://doi.org/10.1038/nnano.2010.172
12 S. Mayorov A. , V. Gorbachev R. , V. Morozov S. , Britnell L. , Jalil R. , A. Ponomarenko L. , Blake P. , S. Novoselov K. , Watanabe K. , Taniguchi T. , K. Geim A. . Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett., 2011, 11 : 2396
https://doi.org/10.1021/nl200758b
13 H. Castro Neto A. , Guinea F. , M. R. Peres N. , S. Novoselov K. , K. Geim A. . The electronic properties of grapheme. Rev. Mod. Phys., 2009, 81 : 109
https://doi.org/10.1103/RevModPhys.81.109
14 Puggioni D. , Giovannetti G. , Capone M. , M. Rondinelli J. . Design of a Mott multiferroic from a nonmagnetic polar metal. Phys. Rev. Lett., 2015, 115 : 087202
https://doi.org/10.1103/PhysRevLett.115.087202
15 Zheng Z. , Ma Q. , Bi Z. , de la Barrera S. , H. Liu M. , Mao N. , Zhang Y. , Kiper N. , Watanabe K. , Taniguchi T. , Kong J. , A. Tisdale W. , Ashoori R. , Gedik N. , Fu L. , Y. Xu S. , Jarillo-Herrero P. . Unconventional ferroelectricity in moiré heterostructures. Nature, 2020, 588 : 71
https://doi.org/10.1038/s41586-020-2970-9
16 V. Kretinin A. , Cao Y. , S. Tu J. , L. Yu G. , Jalil R. , S. Novoselov K. , J. Haigh S. , Gholinia A. , Mishchenko A. , Lozada M. , Georgiou T. , R. Woods C. , Withers F. , Blake P. , Eda G. , Wirsig A. , Hucho C. , Watanabe K. , Taniguchi T. , K. Geim A. , V. Gorbachev R. . Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett., 2014, 14 : 3270
https://doi.org/10.1021/nl5006542
17 Lines M., Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford England, 1977
18 A. Ponomarenko L. , K. Geim A. , A. Zhukov A. , Jalil R. , V. Morozov S. , S. Novoselov K. , V. Grigorieva I. , H. Hill E. , V. Cheianov V. , I. Fal’ko V. , Watanabe K. , Taniguchi T. , V. Gorbachev R. . Tunable metal–insulator transition in double-layer graphene heterostructures. Nat. Phys., 2011, 7 : 958
https://doi.org/10.1038/nphys2114
19 Schmitz M. , Engels S. , Banszerus L. , Watanabe K. , Taniguchi T. , Stampfer C. , Beschoten B. . High mobility dry-transferred CVD bilayer grapheme. Appl. Phys. Lett., 2017, 110 : 263110
https://doi.org/10.1063/1.4990390
20 Wang Z. , B. Wang Y. , Yin J. , Tóvári E. , Yang Y. , Lin L. , Holwill M. , Birkbeck J. , J. Perello D. , Xu S. , Zultak J. , V. Gorbachev R. , V. Kretinin A. , Taniguchi T. , Watanabe K. , V. Morozov S. , Anđelković M. , P. Milovanović S. , Covaci L. , M. Peeters F. , Mishchenko A. , K. Geim A. , S. Novoselov K. , I. Fal’Ko V. , Knothe A. , R. Woods C. . Composite super-moiré lattices in double-aligned graphene heterostructures. Sci. Adv., 2019, 5 : eaay8897
https://doi.org/10.1126/sciadv.aay8897
21 K. Kumar R. , Chen X. , H. Auton G. , Mishchenko A. , A. Bandurin D. , V. Morozov S. , Cao Y. , Khestanova E. , B. Shalom M. , V. Kretinin A. , S. Novoselov K. , Eaves L. , V. Grigorieva I. , A. Ponomarenko L. , I. Fal’Ko V. , K. Geim A. . High-temperature quantum oscillations caused by recurring Bloch states in graphene superlatticess. Science, 2017, 357 : 181
https://doi.org/10.1126/science.aal3357
22 R. Woods C. , Ares P. , Nevison-Andrews H. , J. Holwill M. , Fabregas R. , Guinea F. , K. Geim A. , S. Novoselov K. , R. Walet N. , Fumagalli L. . Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun., 2021, 12 : 347
https://doi.org/10.1038/s41467-020-20667-2
23 V. Stern M. , Waschitz Y. , Cao W. , Nevo I. , Watanabe K. , Taniguchi T. , Sela E. , Urbakh M. , B. Shalom M. . Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372 : 1462
https://doi.org/10.1126/science.abe8177
24 Yasuda K. , Wang X. , Watanabe K. , Taniguchi T. , Jarillo-Herrero P. . Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 2021, 372 : 1458
https://doi.org/10.1126/science.abd3230
25 Cai Q. , Scullion D. , G. Falin W. , Zhang S. , Watanabe K. , Taniguchi T. , CHEN Y. , J. G. Santos E. , H. Li L. . High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv., 2019, 5 : eaav0129
https://doi.org/10.1126/sciadv.aav0129
26 Ares P. , Cea T. , Holwill M. , B. Wang Y. , Roldán R. , Guinea F. , V. Andreeva D. , Fumagalli L. , S. Novoselov K. , R. Woods C. . Piezoelectricity in monolayer hexagonal boron nitride. Adv. Mater., 2020, 32 : 1905504
https://doi.org/10.1002/adma.201905504
27 Min H. , Hwang E. , Das Sarma S. . Chirality-dependent phonon-limited resistivity in multiple layers of graphene. Phys. Rev. B, 2011, 83 : 161404
https://doi.org/10.1103/PhysRevB.83.161404
28 Polshyn H. , Yankowitz M. , Chen S. , Zhang Y. , Watanabe K. , Taniguchi T. , R. Dean C. , F. Young A. . Large linear-in-temperature resistivity in twisted bilayer grapheme. Nat. Phys., 2019, 15 : 1011
https://doi.org/10.1038/s41567-019-0596-3
29 Wu F. , Hwang E. , Das Sarma S. . Phonon-induced giant linear-in-T resistivity in magic angle twisted bilayer graphene: Ordinary strangeness and exotic superconductivity. Phys. Rev. B, 2019, 99 : 165112
https://doi.org/10.1103/PhysRevB.99.165112
30 T. Lin I. , M. Liu J. . Surface polar optical phonon scattering of carriers in graphene on various substrates. Appl. Phys. Lett., 2013, 103 : 081606
https://doi.org/10.1063/1.4819395
31 Li X. , A. Barry E. , M. Zavada J. , B. Nardelli M. , W. Kim K. . Surface polar phonon dominated electron transport in grapheme. Appl. Phys. Lett., 2010, 97 : 232105
https://doi.org/10.1063/1.3525606
32 V. Gorbachev R. , K. Geim A. , I. Katsnelson M. , S. Novoselov K. , Tudorovskiy T. , V. Grigorieva I. , H. MacDonald A. , V. Morozov S. , Watanabe K. , Taniguchi T. , A. Ponomarenko L. . Strong coulomb drag and broken symmetry in double-layer grapheme. Nat. Phys., 2012, 8 : 896
https://doi.org/10.1038/NPHYS2441
[1] fop-21175-OF-yugeliang_suppl_1 Download
[1] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[2] R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides[J]. Front. Phys. , 2018, 13(2): 137401-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed