|
|
Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems |
Junjie Zeng1, Rui Xue1, Tao Hou1, Yulei Han1,2, Zhenhua Qiao1( ) |
1. ICQD, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China 2. Department of Physics, Fuzhou University, Fuzhou 350108, China |
|
|
Abstract We study theoretically the construction of topological conducting domain walls with a finite width between AB/BA stacking regions via finite element method in bilayer graphene systems with tunable commensurate twisting angles. We find that the smaller is the twisting angle, the more significant the lattice reconstruction would be, so that sharper domain boundaries declare their existence. We subsequently study the quantum transport properties of topological zero-line modes which can exist because of the said domain boundaries via Green’s function method and Landauer−Büttiker formalism, and find that in scattering regions with tri-intersectional conducting channels, topological zero-line modes both exhibit robust behavior exemplified as the saturated total transmissionGtot ≈ 2e2/h and obey a specific pseudospin-conserving current partition law among the branch transport channels. The former property is unaffected by Aharonov−Bohm effect due to a weak perpendicular magnetic field, but the latter is not. Results from our genuine bilayer hexagonal system suggest a twisting angle aroundθ ≈ 0.1° for those properties to be expected, consistent with the existing experimental reports.
|
Keywords
twistronics
lattice reconstruction
topological domain wall
zero-line mode
quantum transport
|
Corresponding Author(s):
Zhenhua Qiao
|
Issue Date: 28 July 2022
|
|
1 |
Cao Y. , Fatemi V. , Fang S. , Watanabe K. , Taniguchi T. , Kaxiras E. , Jarillo-Herrero P. . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556( 7699): 43
https://doi.org/10.1038/nature26160
|
2 |
C. Po H. , Zou L. , Vishwanath A. , Senthil T. . Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X, 2018, 8( 3): 031089
https://doi.org/10.1103/PhysRevX.8.031089
|
3 |
Codecido E. , Wang Q. , Koester R. , Che S. , Tian H. , Lv R. , Tran S. , Watanabe K. , Taniguchi T. , Zhang F. , Bockrath M. , N. Lau C. . Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Sci. Adv., 2019, 5( 9): eaaw9770
https://doi.org/10.1126/sciadv.aaw9770
|
4 |
S. Arora H. , Polski R. , Zhang Y. , Thomson A. , Choi Y. , Kim H. , Lin Z. , Z. Wilson I. , Xu X. , H. Chu J. , Watanabe K. , Taniguchi T. , Alicea J. , Nadj-Perge S. . Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature, 2020, 583( 7816): 379
https://doi.org/10.1038/s41586-020-2473-8
|
5 |
Hao Z. , M. Zimmerman A. , Ledwith P. , Khalaf E. , H. Najafabadi D. , Watanabe K. , Taniguchi T. , Vishwanath A. , Kim P. . Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 2021, 371( 6534): 1133
https://doi.org/10.1126/science.abg0399
|
6 |
Cao Y. , Fatemi V. , Demir A. , Fang S. , L. Tomarken S. , Y. Luo J. , D. Sanchez-Yamagishi J. , Watanabe K. , Taniguchi T. , Kaxiras E. , C. Ashoori R. , Jarillo-Herrero P. . Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556( 7699): 80
https://doi.org/10.1038/nature26154
|
7 |
J. Calderon M. , Bascones E. . Correlated states in magic angle twisted bilayer graphene under the optical conductivity scrutiny. npj Quantum Mater., 2020, 5 : 57
https://doi.org/10.1038/s41535-020-00258-6
|
8 |
Zhang C. , P. Chuu C. , Ren X. , Y. Li M. , J. Li L. , Jin C. , Y. Chou M. , K. Shih C. , couplings Interlayer . Moiré patterns, and 2D electronic superlattices in MoS2 /WSe2 hetero-bilayers. Sci. Adv., 2017, 3( 1): e1601459
https://doi.org/10.1126/sciadv.1601459
|
9 |
Jin C. , C. Regan E. , Yan A. , I. B. Utama M. , Wang D. , Zhao S. , Qin Y. , Yang S. , Zheng Z. , Shi S. , Watanabe K. , Taniguchi T. , Tongay S. , Zettl A. , Wang F. . Observation of Moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567( 7746): 76
https://doi.org/10.1038/s41586-019-0976-y
|
10 |
L. Seyler K. , Rivera P. , Yu H. , P. Wilson N. , L. Ray E. , G. Mandrus D. , Yan J. , Yao W. , Xu X. . Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567( 7746): 66
https://doi.org/10.1038/s41586-019-0957-1
|
11 |
Tran K. , Moody G. , Wu F. , Lu X. , Choi J. , Kim K. , Rai A. , A. Sanchez D. , Quan J. , Singh A. , Embley J. , Zepeda A. , Campbell M. , Autry T. , Taniguchi T. , Watanabe K. , Lu N. , K. Banerjee S. , L. Silverman K. , Kim S. , Tutuc E. , Yang L. , H. MacDonald A. , Li X. . Evidence for Moiré excitons in van der Waals heterostructures. Nature, 2019, 567( 7746): 71
https://doi.org/10.1038/s41586-019-0975-z
|
12 |
Liu H. , Zong Y. , Wang P. , Wen H. , Wu H. , Xia J. , Wei Z. . Excitons in two-dimensional van der Waals heterostructures. J. Phys. D Appl. Phys., 2021, 54( 5): 053001
https://doi.org/10.1088/1361-6463/abbf75
|
13 |
Zhang L. , Zhang Z. , Wu F. , Wang D. , Gogna R. , Hou S. , Watanabe K. , Taniguchi T. , Kulkarni K. , Kuo T. , R. Forrest S. , Deng H. . Twist-angle dependence of Moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun., 2020, 11( 1): 5888
https://doi.org/10.1038/s41467-020-19466-6
|
14 |
Brem S. , Linderalv C. , Erhart P. , Malic E. . Tunable phases of Moiré excitons in van der Waals heterostructures. Nano Lett., 2020, 20( 12): 8534
https://doi.org/10.1021/acs.nanolett.0c03019
|
15 |
Song Z. , Wang Z. , Shi W. , Li G. , Fang C. , A. Bernevig B. . All magic angles in twisted bilayer graphene are topological. Phys. Rev. Lett., 2019, 123( 3): 036401
https://doi.org/10.1103/PhysRevLett.123.036401
|
16 |
P. Nuckolls K. , Oh M. , Wong D. , Lian B. , Watanabe K. , Taniguchi T. , A. Bernevig B. , Yazdani A. . Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature, 2020, 588( 7839): 610
https://doi.org/10.1038/s41586-020-3028-8
|
17 |
Wu S. , Zhang Z. , Watanabe K. , Taniguchi T. , Y. Andrei E. . Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater., 2021, 20( 4): 488
https://doi.org/10.1038/s41563-020-00911-2
|
18 |
Stepanov P. Xie M. Taniguchi T. Watanabe K. Lu X. H. MacDonald A. A. Bernevig B. K. Efetov D., Competing zero-field Chern insulators in superconducting twisted bilayer graphene, arXiv: 2012.15126 (2020)
|
19 |
Repellin C. , Senthil T. . Chern bands of twisted bilayer graphene: Fractional Chern insulators and spin phase transition. Phys. Rev. Res., 2020, 2( 2): 023238
https://doi.org/10.1103/PhysRevResearch.2.023238
|
20 |
J. Park M. , Kim Y. , Y. Cho G. , B. Lee S. . Higher-order topological insulator in twisted bilayer graphene. Phys. Rev. Lett., 2019, 123( 21): 216803
https://doi.org/10.1103/PhysRevLett.123.216803
|
21 |
Liu B. , Xian L. , Mu H. , Zhao G. , Liu Z. , Rubio A. , F. Wang Z. . Higher-order band topology in twisted Moiré superlattice. Phys. Rev. Lett., 2021, 126( 6): 066401
https://doi.org/10.1103/PhysRevLett.126.066401
|
22 |
J. Park M. , Jeon S. , B. Lee S. , C. Park H. , Kim Y. . Higher-order topological corner state tunneling in twisted bilayer graphene. Carbon, 2021, 174 : 260
https://doi.org/10.1016/j.carbon.2020.12.037
|
23 |
M. B. Lopes dos Santos J. , M. R. Peres N. , H. Castro Neto A. . Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett., 2007, 99( 25): 256802
https://doi.org/10.1103/PhysRevLett.99.256802
|
24 |
Bistritzer R. , H. MacDonald A. . Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA, 2011, 108( 30): 12233
https://doi.org/10.1073/pnas.1108174108
|
25 |
Carr S. , Fang S. , Zhu Z. , Kaxiras E. . Exact continuum model for low-energy electronic states of twisted bilayer graphene. Phys. Rev. Res., 2019, 1( 1): 013001
https://doi.org/10.1103/PhysRevResearch.1.013001
|
26 |
Balents L. . General continuum model for twisted bilayer graphene and arbitrary smooth deformations. SciPost Phys., 2019, 7 : 048
https://doi.org/10.21468/SciPostPhys.7.4.048
|
27 |
Guinea F. , R. Walet N. . Continuum models for twisted bilayer graphene: Effect of lattice deformation and hopping parameters. Phys. Rev. B, 2019, 99( 20): 205134
https://doi.org/10.1103/PhysRevB.99.205134
|
28 |
T. Phong V. , J. Mele E. . Obstruction and interference in low-energy models for twisted bilayer graphene. Phys. Rev. Lett., 2020, 125( 17): 176404
https://doi.org/10.1103/PhysRevLett.125.176404
|
29 |
Koshino M. , N. T. Nam N. . Effective continuum model for relaxed twisted bilayer graphene and Moiré electron−phonon interaction. Phys. Rev. B, 2020, 101( 19): 195425
https://doi.org/10.1103/PhysRevB.101.195425
|
30 |
Y. Andrei E. , H. MacDonald A. . Graphene bilayers with a twist. Nat. Mater., 2020, 19( 12): 1265
https://doi.org/10.1038/s41563-020-00840-0
|
31 |
N. T. Nam N. , Koshino M. . Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B, 2017, 96( 7): 075311
https://doi.org/10.1103/PhysRevB.96.075311
|
32 |
Perebeinos V. , Tersoff J. , Avouris P. . Phonon-mediated interlayer conductance in twisted graphene bilayers. Phys. Rev. Lett., 2012, 109( 23): 236604
https://doi.org/10.1103/PhysRevLett.109.236604
|
33 |
Trambly de Laissardière G. , Mayou D. , Magaud L. . Numerical studies of confined states in rotated bilayers of graphene. Phys. Rev. B, 2012, 86( 12): 125413
https://doi.org/10.1103/PhysRevB.86.125413
|
34 |
Moon P. , Koshino M. . Energy spectrum and quantum Hall effect in twisted bilayer graphene. Phys. Rev. B, 2012, 85( 19): 195458
https://doi.org/10.1103/PhysRevB.85.195458
|
35 |
Anđelković M. , Covaci L. , M. Peeters F. . DC conductivity of twisted bilayer graphene: Angle-dependent transport properties and effects of disorder. Phys. Rev. Mater., 2018, 2( 3): 034004
https://doi.org/10.1103/PhysRevMaterials.2.034004
|
36 |
C. Po H. , Zou L. , Senthil T. , Vishwanath A. . Faithful tight-binding models and fragile topology of magic-angle bilayer graphene. Phys. Rev. B, 2019, 99( 19): 195455
https://doi.org/10.1103/PhysRevB.99.195455
|
37 |
Gargiulo F. , V Yazyev O. . Structural and electronic transformation in low-angle twisted bilayer grapheme. 2D Mater., 2017, 5 : 015019
https://doi.org/10.1088/2053-1583/aa9640
|
38 |
Yan W. , Y. He W. , D. Chu Z. , Liu M. , Meng L. , F. Dou R. , Zhang Y. , Liu Z. , C. Nie J. , He L. . Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nat. Commun., 2013, 4( 1): 2159
https://doi.org/10.1038/ncomms3159
|
39 |
Yoo H. , Engelke R. , Carr S. , Fang S. , Zhang K. , Cazeaux P. , H. Sung S. , Hovden R. , W. Tsen A. , Taniguchi T. , Watanabe K. , C. Yi G. , Kim M. , Luskin M. , B. Tadmor E. , Kaxiras E. , Kim P. . Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater., 2019, 18( 5): 448
https://doi.org/10.1038/s41563-019-0346-z
|
40 |
Shi H. , Zhan Z. , Qi Z. , Huang K. , van Veen E. , Á. Silva-Guillén J. , Zhang R. , Li P. , Xie K. , Ji H. , I. Katsnelson M. , Yuan S. , Qin S. , Zhang Z. . Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat. Commun., 2020, 11( 1): 371
https://doi.org/10.1038/s41467-019-14207-w
|
41 |
W. Liu Y. , Su Y. , F. Zhou X. , J. Yin L. , Yan C. , Y. Li S. , Yan W. , Han S. , Q. Fu Z. , Zhang Y. , Yang Q. , N. Ren Y. , He L. . Tunable lattice reconstruction, triangular network of chiral one-dimensional states, and bandwidth of flat bands in magic angle twisted bilayer graphene. Phys. Rev. Lett., 2020, 125( 23): 236102
https://doi.org/10.1103/PhysRevLett.125.236102
|
42 |
Uchida K. , Furuya S. , I. Iwata J. , Oshiyama A. . Atomic corrugation and electron localization due to Moiré patterns in twisted bilayer graphenes. Phys. Rev. B, 2014, 90( 15): 155451
https://doi.org/10.1103/PhysRevB.90.155451
|
43 |
K Jain S. , Juričić V. , T Barkema G. . Structure of twisted and buckled bilayer grapheme. 2D Mater., 2016, 4 : 015018
https://doi.org/10.1088/2053-1583/4/1/015018
|
44 |
Dai S. , Xiang Y. , J. Srolovitz D. . Twisted bilayer graphene: Moiré with a twist. Nano Lett., 2016, 16( 9): 5923
https://doi.org/10.1021/acs.nanolett.6b02870
|
45 |
M. van Wijk M. , Schuring A. , I. Katsnelson M. , Fasolino A. . Relaxation of Moiré patterns for slightly misaligned identical lattices: Graphene on graphite. 2D Mater., 2015, 2 : 034010
https://doi.org/10.1088/2053-1583/2/3/034010
|
46 |
Goldstein H. Poole C. Safko J., Classical Mechanics, 3rd Ed., Higher Education Press, Beijing, 2005
|
47 |
Lin X. , Zhu H. , Ni J. . Pressure-induced gap modulation and topological transitions in twisted bilayer and twisted double bilayer graphene. Phys. Rev. B, 2020, 101( 15): 155405
https://doi.org/10.1103/PhysRevB.101.155405
|
48 |
San-Jose P. , Gutierrez-Rubio A. , Sturla M. , Guinea F. . Spontaneous strains and gap in graphene on boron nitride. Phys. Rev. B, 2014, 90( 7): 075428
https://doi.org/10.1103/PhysRevB.90.075428
|
49 |
San-Jose P. , Gutierrez-Rubio A. , Sturla M. , Guinea F. . Electronic structure of spontaneously strained graphene on hexagonal boron nitride. Phys. Rev. B, 2014, 90( 11): 115152
https://doi.org/10.1103/PhysRevB.90.115152
|
50 |
Suzuura H. , Ando T. . Phonons and electron−phonon scattering in carbon nanotubes. Phys. Rev. B, 2002, 65( 23): 235412
https://doi.org/10.1103/PhysRevB.65.235412
|
51 |
Jackiw R. , Rebbi C. . Solitons with fermion number 1/2. Phys. Rev. D, 1976, 13( 12): 3398
https://doi.org/10.1103/PhysRevD.13.3398
|
52 |
Q. Shen S., Topological Insulators: Dirac Equation in Condensed Matter, 2nd Ed., Springer-Verlag GmbH, Singapore, 2017
|
53 |
J. Yin L. , Jiang H. , B. Qiao J. , He L. . Direct imaging of topological edge states at a bilayer graphene domain wall. Nat. Commun., 2016, 7( 1): 11760
https://doi.org/10.1038/ncomms11760
|
54 |
Hou T. , Cheng G. , K. Tse W. , Zeng C. , Qiao Z. . Topological zero-line modes in folded bilayer graphene. Phys. Rev. B, 2018, 98( 24): 245417
https://doi.org/10.1103/PhysRevB.98.245417
|
55 |
Ren Y. , Qiao Z. , Niu Q. . Topological phases in two-dimensional materials: A review. Rep. Prog. Phys., 2016, 79( 6): 066501
https://doi.org/10.1088/0034-4885/79/6/066501
|
56 |
T. Zhang Y. , Qiao Z. , F. Sun Q. . Detecting zero-line mode in bilayer graphene via the quantum Hall effect. Phys. Rev. B, 2013, 87( 23): 235405
https://doi.org/10.1103/PhysRevB.87.235405
|
57 |
Ju L. , Shi Z. , Nair N. , Lv Y. , Jin C. , Jr Velasco J. , Ojeda-Aristizabal C. , A. Bechtel H. , C. Martin M. , Zettl A. , Analytis J. , Wang F. . Topological valley transport at bilayer graphene domain walls. Nature, 2015, 520( 7549): 650
https://doi.org/10.1038/nature14364
|
58 |
Bi X. , Jung J. , Qiao Z. . Role of geometry and topological defects in the one-dimensional zero-line modes of graphene. Phys. Rev. B, 2015, 92( 23): 235421
https://doi.org/10.1103/PhysRevB.92.235421
|
59 |
Li J. , Wang K. , J. McFaul K. , Zern Z. , Ren Y. , Watanabe K. , Taniguchi T. , Qiao Z. , Zhu J. . Gate-controlled topological conducting channels in bilayer graphene. Nat. Nanotechnol., 2016, 11( 12): 1060
https://doi.org/10.1038/nnano.2016.158
|
60 |
Wang K. , Ren Y. , Deng X. , A. Yang S. , Jung J. , Qiao Z. . Gate-tunable current partition in graphene-based topological zero lines. Phys. Rev. B, 2017, 95( 24): 245420
https://doi.org/10.1103/PhysRevB.95.245420
|
61 |
Ren Y. , Zeng J. , Wang K. , Xu F. , Qiao Z. . Tunable current partition at zero-line intersection of quantum anomalous Hall topologies. Phys. Rev. B, 2017, 96( 15): 155445
https://doi.org/10.1103/PhysRevB.96.155445
|
62 |
Wang K. , Hou T. , Ren Y. , Qiao Z. . Enhanced robustness of zero-line modes in graphene via magnetic field. Front. Phys., 2019, 14( 2): 23501
https://doi.org/10.1007/s11467-018-0869-9
|
63 |
Hou T. , Ren Y. , Quan Y. , Jung J. , Ren W. , Qiao Z. . Metallic network of topological domain walls. Phys. Rev. B, 2020, 101( 20): 201403
https://doi.org/10.1103/PhysRevB.101.201403
|
64 |
Hou T. , Ren Y. , Quan Y. , Jung J. , Ren W. , Qiao Z. . Valley current splitter in minimally twisted bilayer graphene. Phys. Rev. B, 2020, 102( 8): 085433
https://doi.org/10.1103/PhysRevB.102.085433
|
65 |
Qiao Z. , Jung J. , Lin C. , Ren Y. , H. MacDonald A. , Niu Q. . Current partition at topological channel intersections. Phys. Rev. Lett., 2014, 112( 20): 206601
https://doi.org/10.1103/PhysRevLett.112.206601
|
66 |
Yan Z. , Hou T. , Han Y. , Xu X. , Qiao Z. . Electronic properties of zero-line modes in bilayer graphene: An ab initio study. Phys. Rev. B, 2022, 105( 3): 035425
https://doi.org/10.1103/PhysRevB.105.035425
|
67 |
Kim M. , H. Choi J. , H. Lee S. , Watanabe K. , Taniguchi T. , H. Jhi S. , J. Lee H. . Valley-symmetry-preserved transport in ballistic graphene with gate-defined carrier guiding. Nat. Phys., 2016, 12( 11): 1022
https://doi.org/10.1038/nphys3804
|
68 |
A. Bhatti M., Advanced Topics in Finite Element Analysis of Structures: With Mathematica and MATLAB Computations, John Wiley & Sons, 2006
|
69 |
Logg A. A. Mardal K. Wells G., Automated Solution of Differential Equations by the Finite Element Method, 1st Ed., Springer-Verlag GmbH, Berlin Heidelberg, 2012
|
70 |
C. Zienkiewicz O. L. Taylor R. Z. Zhu J., The Finite Element Method: Its Basis and Fundamentals, 7th Ed., Butterworth-Heinemann Elsevier, Amsterdam, 2013
|
71 |
N. Reddy J., An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics, 1st Ed., Oxford University Press, Oxford, 2014
|
72 |
Logan D., A First Course in the Finite Element Method, 1st Ed., Cengage Learning, Boston, MA, 2017
|
73 |
T. Carr S., Moire Patterns in 2D Materials, PHD thesis, Harvard University, 2020
|
74 |
V. Zakharchenko K. , I. Katsnelson M. , Fasolino A. . Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett., 2009, 102( 4): 046808
https://doi.org/10.1103/PhysRevLett.102.046808
|
75 |
Jung J. , M. DaSilva A. , H. MacDonald A. , Adam S. . Origin of band gaps in graphene on hexagonal boron nitride. Nat. Commun., 2015, 6( 1): 6308
https://doi.org/10.1038/ncomms7308
|
76 |
M. Popov A. , V. Lebedeva I. , A. Knizhnik A. , E. Lozovik Y. , V. Potapkin B. . Commensurate-incommensurate phase transition in bilayer graphene. Phys. Rev. B, 2011, 84( 4): 045404
https://doi.org/10.1103/PhysRevB.84.045404
|
77 |
V. Lebedeva I. , A. Knizhnik A. , M. Popov A. , E. Lozovik Y. , V. Potapkin B. . Interlayer interaction and relative vibrations of bilayer graphene. Phys. Chem. Chem. Phys., 2011, 13( 13): 5687
https://doi.org/10.1039/c0cp02614j
|
78 |
C. Slater J. , F. Koster G. . Simplified LCAO method for the periodic potential problem. Phys. Rev., 1954, 94( 6): 1498
https://doi.org/10.1103/PhysRev.94.1498
|
79 |
Datta S., Electronic Transport in Mesoscopic Systems, 1st Ed., World Publishing Corporation, Beijing, 2004
|
80 |
Datta S., Quantum Transport: Atom to Transistor, 1st Ed., Beijing World Publishing Corporation, Beijing, 2007
|
81 |
Qiao Z., Charge and spin transport in two-dimensional mesoscopic systems, PHD thesis, University of Hong Kong, 2009
|
82 |
K. Ferry D. M. Goodnick S. Bird J., Transport in Nanostructures, 2nd Ed., Cambridge University Press, Cambridge, 2009
|
83 |
Hirose K., Quantum Transport Calculations for Nanosystems, 1st Ed., CRC Press, Boca Raton, 2014
|
84 |
D. Ventra M., Electrical Transport in Nanoscale Systems, 1st Ed., Cambridge University Press, Cambridge, 2016
|
85 |
Ryndyk D., Theory of Quantum Transport at Nanoscale, 1st Ed., Springer-Verlag GmbH, Switzerland, 2015
|
86 |
P. L. Sancho M. , M. L. Sancho J. , Rubio J. . Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100). J. Phys. F Met. Phys., 1984, 14( 5): 1205
https://doi.org/10.1088/0305-4608/14/5/016
|
87 |
P. L. Sancho M. , M. L. Sancho J. , M. L. Sancho J. , Rubio J. . Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys., 1985, 15( 4): 851
https://doi.org/10.1088/0305-4608/15/4/009
|
88 |
Z. Yu Z. , H. Xiong G. , F. Zhang L. . A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach. Front. Phys., 2021, 16( 4): 43201
https://doi.org/10.1007/s11467-021-1051-3
|
89 |
Qiao Z. , Wang J. . A variant transfer matrix method suitable for transport through multi-probe systems. Nanotechnology, 2007, 18( 43): 435402
https://doi.org/10.1088/0957-4484/18/43/435402
|
90 |
Peierls R. . Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys., 1933, 80 : 763
https://doi.org/10.1007/BF01342591
|
91 |
H. Wannier G. . Dynamics of band electrons in electric and magnetic fields. Rev. Mod. Phys., 1962, 34( 4): 645
https://doi.org/10.1103/RevModPhys.34.645
|
92 |
I. Blount E. . Bloch electrons in a magnetic field. Phys. Rev., 1962, 126( 5): 1636
https://doi.org/10.1103/PhysRev.126.1636
|
93 |
Kohn W. . Theory of Bloch electrons in a magnetic field: The effective Hamiltonian. Phys. Rev., 1959, 115( 6): 1460
https://doi.org/10.1103/PhysRev.115.1460
|
94 |
M. Luttinger J. . The effect of a magnetic field on electrons in a periodic potential. Phys. Rev., 1951, 84( 4): 814
https://doi.org/10.1103/PhysRev.84.814
|
95 |
R. Hofstadter D. . Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B, 1976, 14( 6): 2239
https://doi.org/10.1103/PhysRevB.14.2239
|
96 |
P. Feynman R. B. Leighton R. Sands M., The Feynman Lectures on Physics, The New Millennium Ed., Basic Books, New York, 2011
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|