Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2015, Vol. 10 Issue (1) : 108501    https://doi.org/10.1007/s11467-014-0443-z
Condensed Matter, Materials Physics, and Statistical Physics
Single molecular shuttle-junction: Shot noise and decoherence
Wenxi Lai1,2,Chao Zhang3,Zhongshui Ma1,4,*()
1. School of Physics, Peking University, Beijing 100871, China
2. Beijing Computational Science Research Center, Beijing 100084, China
3. School of Physics, University of Wollongong, New South Wales 2522, Australia
4. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
 Download: PDF(1001 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Single molecular shuttle-junction is one kind of nanoscale electromechanical tunneling system. In this junction, a molecular island oscillates depending on its charge occupation, and this charge dependent oscillation leads to modulation of electron tunneling through the molecular island. This paper reviews recent development on the study of current, shot noise and decoherence of electrons in the single molecular shuttle-junction. We will give detailed discussion on this topic using the typical system model, the theory of fully quantum master equation and the Aharonov–Bohm interferometer.

Keywords molecular shuttle-junction      master equation      shot noise      decoherence     
Corresponding Author(s): Zhongshui Ma   
Issue Date: 10 February 2015
 Cite this article:   
Wenxi Lai,Chao Zhang,Zhongshui Ma. Single molecular shuttle-junction: Shot noise and decoherence[J]. Front. Phys. , 2015, 10(1): 108501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-014-0443-z
https://academic.hep.com.cn/fop/EN/Y2015/V10/I1/108501
1 L. Y. Gorelik, A. Isacsson, M. V. Voinova, B. Kasemo, R. I. Shekhter , and M. Jonson, Shuttle mechanism for charge transfer in coulomb blockade nanostructures, Phys. Rev. Lett. 80(20), 4526 (1998)
https://doi.org/10.1103/PhysRevLett.80.4526
2 A. Donarini, T. Novotn’y, and A. P. Jauho, Simple models suffice for the single-dot quantum shuttle, New J. Phys. 7(1), 237 (2005)
https://doi.org/10.1088/1367-2630/7/1/237
3 D. W. Utami, H. S. Goan, C. A. Holmes, and G. J. Milburn, Quantum noise in the electromechanical shuttle: Quantum master equation treatment, Phys. Rev. B 74(1), 014303 (2006)
https://doi.org/10.1103/PhysRevB.74.014303
4 D. Mozyrsky and I. Martin, Quantum classical transition induced by electrical measurement, Phys. Rev. Lett. 89(1), 018301 (2002)
https://doi.org/10.1103/PhysRevLett.89.018301
5 D. Mozyrsky, I. Martin, and M. B. Hastings, Quantumlimited sensitivity of single-electron-transistor-based displacement detectors, Phys. Rev. Lett. 92(1), 018303 (2004)
https://doi.org/10.1103/PhysRevLett.92.018303
6 S. Etaki, M. Poot, I. Mahboob, K. Onomitsu, H. Yamaguchi, and H. S. J. Van Der Zant, Motion detection of a micromechanical resonator embedded in a d.c. SQUID, Nat. Phys. 4(10), 785 (2008)
https://doi.org/10.1038/nphys1057
7 M. P. Blencowe and M. N. Wybourne, Sensitivity of a micromechanical displacement detector based on the radio-frequency single-electron transistor,Appl. Phys. Lett. 77( 23), 3845 (2000)
https://doi.org/10.1063/1.1331090
8 J. Twamley, D. W. Utami, H. S. Goan, and G. Milburn, Spin-detection in a quantum electromechanical shuttle system, New J. Phys. 8(5), 63 (2006)
https://doi.org/10.1088/1367-2630/8/5/063
9 D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Single spin detection by magnetic resonance force microscopy, Nature 430(6997), 329 (2004)
https://doi.org/10.1038/nature02658
10 A. N. Cleland and M. L. Roukes, A nanometre-scale mechanical electrometer, Nature 392, 160 (1998)
https://doi.org/10.1038/32373
11 H. B. Meerwaldt, G. Labadze, B. H. Schneider, A. Taspinar, Ya. M. Blanter, H. S. J. van der Zant, and G. A. Steele, Probing the charge of a quantum dot with a nanomechanical resonator, Phys. Rev. B 86(11), 115454 (2012)
https://doi.org/10.1103/PhysRevB.86.115454
12 K. Jensen, K. Kim, and A. Zettl, An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol. 3(9), 533 (2008)
https://doi.org/10.1038/nnano.2008.200
13 J. Koch, F. von Oppen, Y. Oreg, and E. Sela, Thermopower of single-molecule devices, Phys. Rev. B 70(19), 195107 (2004)
https://doi.org/10.1103/PhysRevB.70.195107
14 M. Galperin, K. Saito, A. V. Balatsky, and A. Nitzan, Cooling mechanisms in molecular conduction junctions, Phys. Rev. B 80(11), 115427 (2009)
https://doi.org/10.1103/PhysRevB.80.115427
15 G. Romano, A. Gagliardi, A. Pecchia, and A. Di Carlo, Heating and cooling mechanisms in single-molecule junctions, Phys. Rev. B 81(11), 115438 (2010)
https://doi.org/10.1103/PhysRevB.81.115438
16 G. Schulze, K. J. Franke, A. Gagliardi, G. Romano, C. S. Lin, A. L. Rosa, T. A. Niehaus, Th. Frauenheim, A. Di Carlo, A. Pecchia, and J. I. Pascual, Resonant electron heating and molecular phonon cooling in single C60 junctions, Phys. Rev. Lett. 100(13), 136801 (2008)
https://doi.org/10.1103/PhysRevLett.100.136801
17 P. C. E. Stamp and C. Zhang, Theory of Bloch delocalization and quantum diffusion of heavy particles in insulators, Phys. Rev. Lett. 66(14), 1902 (1991)
https://doi.org/10.1103/PhysRevLett.66.1902
18 C. Zhang and Y. Takahashi, Dynamical conductivity of a two-layered structure with electron acoustic phonon coupling, J. Phys.: Condens. Matter 5(28), 5009 (1993)
https://doi.org/10.1088/0953-8984/5/28/015
19 A. Nocera, C. A. Perroni, V. Marigliano Ramaglia, and V. Cataudella, Stochastic dynamics for a single vibrational mode in molecular junctions, Phys. Rev. B 83(11), 115420 (2011)
https://doi.org/10.1103/PhysRevB.83.115420
20 A. Metelmann and T. Brandes, Adiabaticity in semiclassical nanoelectromechanical systems, Phys. Rev. B 84(15), 155455 (2011)
https://doi.org/10.1103/PhysRevB.84.155455
21 T. Koch, J. Loos, A. Alvermann, and H. Fehske, Nonequilibrium transport through molecular junctions in the quantum regime, Phys. Rev. B 84(12), 125131 (2011)
https://doi.org/10.1103/PhysRevB.84.125131
22 R. C. Monreal, F. Flores, and A. Martin-Rodero, Nonequilibrium transport in molecular junctions with strong electron-phonon interactions, Phys. Rev. B 82(23), 235412 (2010)
https://doi.org/10.1103/PhysRevB.82.235412
23 M. Galperin, M. A. Ratner, and A. Nitzan, Inelastic electron tunneling spectroscopy in molecular junctions: Peaks and dips, J. Chem. Phys. 121(23), 11965 (2004)
https://doi.org/10.1063/1.1814076
24 M. Galperin, M. A. Ratner, and A. Nitzan, On the line widths of vibrational features in inelastic electron tunneling spectroscopy, Nano Lett. 4(9), 1605 (2004)
https://doi.org/10.1021/nl049319y
25 L. Mühlbacher and E. Rabani, Real-time path integral approach to nonequilibrium many-body quantum systems, Phys. Rev. Lett. 100(17), 176403 (2008)
https://doi.org/10.1103/PhysRevLett.100.176403
26 D. F. Walls and G. J. Milburn, Quantum Optics, New York: Springer-Verlag, 1994, p91
27 M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997, page 249
https://doi.org/10.1017/CBO9780511813993
28 S. A. Gurvitz and Y. S. Prager, Microscopic derivation of rate equations for quantum transport, Phys. Rev. B 53(23), 15932 (1996)
https://doi.org/10.1103/PhysRevB.53.15932
29 D. Boese and H. Schoeller, Influence of nanomechanical properties on single-electron tunneling: A vibrating singleelectron transistor, Europhys. Lett. 54(5), 668 (2001)
https://doi.org/10.1209/epl/i2001-00367-8
30 K. D. McCarthy, N. Prokofev, and M. T. Tuominen, Incoherent dynamics of vibrating single-molecule transistors, Phys. Rev. B 67(24), 245415 (2003)
https://doi.org/10.1103/PhysRevB.67.245415
31 S. Braig and K. Flensberg, Vibrational sidebands and dissipative tunneling in molecular transistors, Phys. Rev. B 68(20), 205324 (2003)
https://doi.org/10.1103/PhysRevB.68.205324
32 J. Koch and F. von Oppen, Franck–Condon blockade and giant fano factors in transport through single molecules, Phys. Rev. Lett. 94(20), 206804 (2005)
https://doi.org/10.1103/PhysRevLett.94.206804
33 D. Kast, L. Keche, and J. Ankerhold, Charge transfer through single molecule contacts: How reliable are rate descriptions? Beilstein J. Nanotechnol. 2, 416 (2011)
https://doi.org/10.3762/bjnano.2.47
34 W. Lai, Y. Cao, and Z. Ma, Current–oscillator correlation and Fano factor spectrum of quantum shuttle with finite bias voltage and temperature, J. Phys.: Condens. Matter 24(17), 175301 (2012)
https://doi.org/10.1088/0953-8984/24/17/175301
35 W. Lai, Y. Xing, and Z. Ma, Dephasing of electrons in the Aharonov–Bohm interferometer with a single-molecular vibrational junction, J. Phys.: Condens. Matter 25(20), 205304 (2013)
https://doi.org/10.1088/0953-8984/25/20/205304
36 T. Novotny, A. Donarini, and A. P. Jauho, Quantum shuttle in phase space, Phys. Rev. Lett. 90(25), 256801 (2003)
https://doi.org/10.1103/PhysRevLett.90.256801
37 T. Novotny, A. Donarini, C. Flindt, and A. P. Jauho, Shot noise of a quantum shuttle, Phys. Rev. Lett. 92(24), 248302 (2004)
https://doi.org/10.1103/PhysRevLett.92.248302
38 F. Haupt, F. Cavaliere, R. Fazio, and M. Sassetti, Anomalous suppression of the shot noise in a nanoelectromechanical system, Phys. Rev. B 74(20), 205328 (2006)
https://doi.org/10.1103/PhysRevB.74.205328
39 L. Y. Gorelik, S. I. Kulinich, R. I. Shekhter, M. Jonson, and V. M. Vinokur, Mechanically assisted spin-dependent transport of electrons, Phys. Rev. B 71(3), 035327 (2005)
https://doi.org/10.1103/PhysRevB.71.035327
40 R. Q. Wang, B. Wang, and D. Y. Xing, Spin valve effect in a magnetic nanoelectromechanical shuttle, Phys. Rev. Lett. 100(11), 117206 (2008)
https://doi.org/10.1103/PhysRevLett.100.117206
41 D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Quantum shuttle phenomena in a nanoelectromechanical single-electron transistor, Phys. Rev. Lett. 92(16), 166801 (2004)
https://doi.org/10.1103/PhysRevLett.92.166801
42 S. D. Bennett and A. A. Clerk, Laser-like instabilities in quantum nano-electromechanical systems, Phys. Rev. B 74(20), 201301 (2006)
https://doi.org/10.1103/PhysRevB.74.201301
43 A. D. Armour and A. MacKinnon, Transport via a quantum shuttle, Phys. Rev. B 66(3), 035333 (2002)
https://doi.org/10.1103/PhysRevB.66.035333
44 M. N. Kiselev, K. Kikoin, R. I. Shekhter, and V. M. Vinokur, Kondo shuttling in a nanoelectromechanical single-electron transistor, Phys. Rev. B 74(23), 233403 (2006)
https://doi.org/10.1103/PhysRevB.74.233403
45 J. Mravlje and A. Ram?ak, Kondo effect and channel mixing in oscillating molecules, Phys. Rev. B 78(23), 235416 (2008)
https://doi.org/10.1103/PhysRevB.78.235416
46 J. Mravlje and A. Ram?ak, Kondo effect in oscillating molecules, Phys. Status Solidi B 246(5), 994 (2009)
https://doi.org/10.1002/pssb.200881565
47 L. G. G. V. Dias da Silva, and E. Dagotto, Phonon-assisted tunneling and two-channel Kondo physics in molecular junctions, Phys. Rev. B 79(15), 155302 (2009)
https://doi.org/10.1103/PhysRevB.79.155302
48 D. Gole?, J. Bon?a, and R. Zitko, Vibrational Andreevˇ bound states in magnetic molecules, Phys. Rev. B 86(8), 085142 (2012)
https://doi.org/10.1103/PhysRevB.86.085142
49 J. Koch, M. E. Raikh, and F. von Oppen, Pair tunneling through single molecules, Phys. Rev. Lett. 96(5), 056803 (2006)
https://doi.org/10.1103/PhysRevLett.96.056803
50 M. J. Hwang, M. S. Choi, and R. López, Pair tunneling and shot noise through a single molecule in a strong electron phonon coupling regime, Phys. Rev. B 76(16), 165312 (2007)
https://doi.org/10.1103/PhysRevB.76.165312
51 Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, Detection of heating in current-carrying molecular junctions by Raman scattering, Nat. Nanotechnol. 3(12), 727 (2008)
https://doi.org/10.1038/nnano.2008.304
52 S. W. Wu, G. V. Nazin, and W. Ho, Intramolecular photon emission from a single molecule in a scanning tunneling microscope, Phys. Rev. B 77(20), 205430 (2008)
https://doi.org/10.1103/PhysRevB.77.205430
53 D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, Simultaneous measurements of electronic conduction and raman response in molecular junctions, Nano Lett. 8(3), 919 (2008)
https://doi.org/10.1021/nl073346h
54 M. Galperin, M. A. Ratner, and A. Nitzan, Raman scattering from nonequilibrium molecular conduction junctions, Nano Lett. 9(2), 758 (2009)
https://doi.org/10.1021/nl803313f
55 M. Galperin, M. A. Ratner, and A. Nitzan, Raman scattering in current-carrying molecular junctions, J. Chem. Phys. 130(14), 144109 (2009)
https://doi.org/10.1063/1.3109900
56 M. Oren, M. Galperin, and A. Nitzan, Raman scattering from molecular conduction junctions: Charge transfer mechanism, Phys. Rev. B 85(11), 115435 (2012)
https://doi.org/10.1103/PhysRevB.85.115435
57 G. L. Eesley and J. R. Smith, Enhanced Raman scattering on metal surfaces, Solid State Commun. 31(11), 815 (1979)
https://doi.org/10.1016/0038-1098(79)90394-6
58 J. P. Goudonnet, G. M. Begun, and E. T. Arakawa, Surfaceenhanced raman scattering on silver-coated Teflon sphere substrates, Chem. Phys. Lett. 92(2), 197 (1982)
https://doi.org/10.1016/0009-2614(82)80105-X
59 H. Yamada, Y. Yamamoto, and N. Tani, Surface-enhanced raman scattering (SERS) of adsorbed molecules on smooth surfaces of metals and a metal oxide, Chem. Phys. Lett. 86(4), 397 (1982)
https://doi.org/10.1016/0009-2614(82)83531-8
60 H. Wetzel, H. Gerischer, and B. Pettinger, Surface-enhanced raman scattering from silver-cyanide and silver-thiocyanate vibrations and the importance of adatoms, Chem. Phys. Lett. 80(1), 159 (1981)
https://doi.org/10.1016/0009-2614(81)80080-2
61 P. F. Liao, J. G. Bergman, D. S. Chemla, A. Wokaun, J. Melngailis, A. M. Hawryluk, and N. P. Economou, Surfaceenhanced raman scattering from microlithographic silver particle surfaces, Chem. Phys. Lett. 82(2), 355 (1981)
https://doi.org/10.1016/0009-2614(81)85172-X
62 D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface, J. Chem. Phys. 78(9), 5324 (1983)
https://doi.org/10.1063/1.445486
63 C. G. Blatchford, M. Kerker, and D. S. Wang, Surfaceenhanced Raman spectroscopy of water: Iniplications of the electromagnetic model, Chem. Phys. Lett. 100(3), 230 (1983)
https://doi.org/10.1016/0009-2614(83)87282-0
64 D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Spintronics of a nanoelectromechanical shuttle, Phys. Rev. Lett. 95(5), 057203 (2005)
https://doi.org/10.1103/PhysRevLett.95.057203
65 R. I. Shekhter, A. Pulkin, and M. Jonson, Spintronic mechanics of a magnetic nanoshuttle, Phys. Rev. B 86(10), 100404 (2012)
https://doi.org/10.1103/PhysRevB.86.100404
66 S. Datta, W. Tian, S. Hong, R. Reifenberger, J. I. Henderson, and C. P. Kubiak, Current-voltage characteristics of self-assembled monolayers by scanning tunneling microscopy, Phys. Rev. Lett. 79(13), 2530 (1997)
https://doi.org/10.1103/PhysRevLett.79.2530
67 C. Kergueris, J. P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga, and C. Joachim, Electron transport through a metal molecule metal junction, Phys. Rev. B 59(19), 12505 (1999)
https://doi.org/10.1103/PhysRevB.59.12505
68 D. Porath, A. Bezryadin, S. de Vries, and C. Dekker , Direct measurement of electrical transport through DNA molecules, Nature 403(6770), 635 (2000)
https://doi.org/10.1038/35001029
69 H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nanomechanical oscillations in a single-C60 transistor, Nature 407, 57 (2000)
https://doi.org/10.1038/35024031
70 M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Conductance of a molecular junction, Science 278(5336), 252 (1997)
https://doi.org/10.1126/science.278.5336.252
71 N. B. Zhitenev, H. Meng, and Z. Bao, Conductance of small molecular junctions, Phys. Rev. Lett. 88(22), 226801 (2002)
https://doi.org/10.1103/PhysRevLett.88.226801
72 J. H. Sch?n, H. Meng, and Z. Bao, Self-assembled monolayer organic field-effect transistors, Nature 413(6857), 713 (2001)
https://doi.org/10.1038/35099520
73 C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath, A [2]catenane-based solid state electronically reconfigurable switch, Science 289(5482), 1172 (2000)
https://doi.org/10.1126/science.289.5482.1172
74 J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device, Science 286(5444), 1550 (1999)
https://doi.org/10.1126/science.286.5444.1550
75 X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Reproducible measurement of single-molecule conductivity, Sience 294(5542), 571 (2001)
https://doi.org/10.1126/science.1064354
76 Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J. J. Stapleton, A. M. Price, D. L. Rawlett, and J. M. Allara, Tour, and P. S. Weiss, Conductance switching in single molecules through conformational changes, Science 292(5525), 2303 (2001)
https://doi.org/10.1126/science.1060294
77 O. Tal, M. Kiguchi, W. H. A. Thijssen, D. Djukic, C. Untiedt, R. H. M. Smit, and J. M. van Ruitenbeek, Molecular signature of highly conductive metal molecule metal junctions, Phys. Rev. B 80(8), 085427 (2009)
https://doi.org/10.1103/PhysRevB.80.085427
78 A. Bannani, C. Bobisch, and R. M?ller, Ballistic electron microscopy of individual molecules, Science 315(5820), 1824 (2007)
https://doi.org/10.1126/science.1138668
79 S. W. Wu, N. Ogawa, and W. Ho, Atomic scale coupling of photons to single-molecule junctions, Science 312(5778), 1362 (2006)
https://doi.org/10.1126/science.1124881
80 L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation, Nature 442(7105), 904 (2006)
https://doi.org/10.1038/nature05037
81 A. Erbe, C. Weiss, W. Zwerger, and R. H. Blick, Nanomechanical resonator shuttling single electrons at radio frequencies, Phys. Rev. Lett. 87(9), 096106 (2001)
https://doi.org/10.1103/PhysRevLett.87.096106
82 A. V. Moskalenko, S. N. Gordeev, O. F. Koentjoro, P. R. Raithby, R. W. French, F. Marken, and S. E. Savel’ev, Nanomechanical electron shuttle consisting of a gold nanoparticle embedded within the gap between two gold electrodes, Phys. Rev. B 79(24), 241403 (2009)
https://doi.org/10.1103/PhysRevB.79.241403
83 A. V. Moskalenko, S. N. Gordeev, O. F. Koentjoro, P. R. Raithby, R. W. French, F. Marken, and S. Savel’ev, Fabrication of shuttle-junctions for nanomechanical transfer of electrons, Nanotechnology 20(48), 485202 (2009)
https://doi.org/10.1088/0957-4484/20/48/485202
84 M. Galperin, M. A. Ratner, and A. Nitzan, On the line widths of vibrational features in inelastic electron tunneling spectroscopy, Nano Lett. 4(9), 1605 (2004)
https://doi.org/10.1021/nl049319y
85 D. W. Utami, H. S. Goan, and G. J. Milburn, Charge transport in a quantum electromechanical system, Phys. Rev. B 70(7), 075303 (2004)
https://doi.org/10.1103/PhysRevB.70.075303
86 M. Galperin, M. A. Ratner, and A. Nitzan, Molecular transport junctions: Vibrational effects, J. Phys.: Condens. Matter 19(10), 103201 (2007)
https://doi.org/10.1088/0953-8984/19/10/103201
87 D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Vibrational instability due to coherent tunneling of electrons, Europhys. Lett. 58(1), 99 (2002)
https://doi.org/10.1209/epl/i2002-00611-3
88 A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Coherence and phase sensitive measurements in a quantum dot, Phys. Rev. Lett. 74(20), 4047 (1995)
https://doi.org/10.1103/PhysRevLett.74.4047
89 R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and H. Shtrikman, Phase measurement in a quantum dot via a double-slit interference experiment, Nature 385(6615), 417 (1997)
https://doi.org/10.1038/385417a0
90 G. Cernicchiaro, T. Martin, K. Hasselbach, D. Mailly, and A. Benoit, Channel interference in a quasiballistic Aharonov Bohm experiment, Phys. Rev. Lett. 79(2), 273 (1997)
https://doi.org/10.1103/PhysRevLett.79.273
91 V. N. Stavrou and X. Hu, Charge decoherence in laterally coupled quantum dots due to electron–phonon interactions, Phys. Rev. B 72(7), 075362 (2005)
https://doi.org/10.1103/PhysRevB.72.075362
92 A. Grodecka-Grad and J. F?rstner, Phonon-assisted decoherence and tunneling in quantum dot molecules, Phys. Status Solidi C 8(4), 1125 (2011)
https://doi.org/10.1002/pssc.201000824
93 K. Roszak, A. Grodecka, P. Machnikowski, and T. Kuhn, Phonon-induced decoherence for a quantum-dot spin qubit operated by Raman passage, Phys. Rev. B 71(19), 195333 (2005)
https://doi.org/10.1103/PhysRevB.71.195333
94 X. Hu, Two-spin dephasing by electron-phonon interaction in semiconductor double quantum dots, Phys. Rev. B 83(16), 165322 (2011)
https://doi.org/10.1103/PhysRevB.83.165322
95 F. L. Semi?o, K. Furuya, and G. J. Milburn, Vibrationenhanced quantum transport, New J. Phys. 12(8), 083033 (2010)
https://doi.org/10.1088/1367-2630/12/8/083033
96 I. L. Aleiner, N. S. Wingreen, and Y. Meir, Dephasing and the orthogonality catastrophe in tunneling through a quantum dot: The “which path?” interferometer, Phys. Rev. Lett. 79(19), 3740 (1997)
https://doi.org/10.1103/PhysRevLett.79.3740
97 M. Heiblum, E. Buks, R. Schuster, D. Mahalu, and V. Umansky, Dephasing in electron interference by a “whichpath” detector, Nature 391(6670), 871 (1998)
https://doi.org/10.1038/36057
98 D. Sprinzak, E. Buks, M. Heiblum, and H. Shtrikman, Controlled dephasing of electrons via a phase sensitive detector, Phys. Rev. Lett. 84(25), 5820 (2000)
https://doi.org/10.1103/PhysRevLett.84.5820
99 J. K?nig and Y. Gefen, Coherence and partial coherence in interacting electron systems, Phys. Rev. Lett. 86(17), 3855 (2001)
https://doi.org/10.1103/PhysRevLett.86.3855
100 J. K?nig and Y. Gefen, Aharonov Bohm interferometry with interacting quantum dots: Spin configurations, asymmetric interference patterns, bias-voltage-induced Aharonov Bohm oscillations, and symmetries of transport coefficients, Phys. Rev. B 65(4), 045316 (2002)
https://doi.org/10.1103/PhysRevB.65.045316
101 H. Aikawa, K. Kobayashi, A. Sano, S. Katsumoto, and Y. Iye, Observation of “partial coherence” in an Aharonov Bohm interferometer with a quantum dot, Phys. Rev. Lett. 92(17), 176802 (2004)
https://doi.org/10.1103/PhysRevLett.92.176802
102 G. Luck Khym and K. Kang, Charge detection in a closedloop Aharonov–Bohm interferometer, Phys. Rev. B 74(15), 153309 (2006)
https://doi.org/10.1103/PhysRevB.74.153309
103 V. Moldoveanu, M. Tolea, and B. Tanatar, Controlled dephasing in single-dot Aharonov–Bohm interferometers, Phys. Rev. B 75(4), 045309 (2007)
https://doi.org/10.1103/PhysRevB.75.045309
104 D. Rohrlich, O. Zarchin, M. Heiblum, D. Mahalu, and V. Umansky, Controlled dephasing of a quantum dot: From coherent to sequential tunneling, Phys. Rev. Lett. 98(9), 096803 (2007)
https://doi.org/10.1103/PhysRevLett.98.096803
105 A. D. Armour and M. P. Blencowe, Possibility of an electromechanical which-path interferometer, Phys. Rev. B 64(3), 035311 (2001)
https://doi.org/10.1103/PhysRevB.64.035311
106 A. D. Armour and M. Blencowe, Dephasing and thermal smearing in an electromechanical which-path device, Physica B, 2002, 316 317: 400
107 C. Joachim, J. K. Gimzewski, and A. Aviram, Electronics using hybrid-molecular and mono-molecular devices, Nature 408(6812), 541 (2000)
https://doi.org/10.1038/35046000
108 R. I. Shekhter, Y. Galperin , L. Y. Gorelik, A. Isacsson, and M. Jonson, Shuttling of electrons and Cooper pairs, J. Phys.: Condens. Matter 15(12), R441 (2003)
https://doi.org/10.1088/0953-8984/15/12/201
109 R. I. Shekhter, L. Y. Gorelik, I. V. Krive, M. N. Kiselev, A. V. Parafilo, and M. Jonson, Nanoelectromechanics of shuttle devices, Nanomechanics 1, 1 (2013)
110 M. Galperin, M. A. Ratner, A. Nitzan, and A. Troisi, Nuclear coupling and polarization in molecular transport junctions: Beyond tunneling to function, Science 319(5866), 1056 (2008)
https://doi.org/10.1126/science.1146556
111 M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81(4), 1665 (2009)
https://doi.org/10.1103/RevModPhys.81.1665
112 X. Li, J. Luo, Y. Yang, P. Cui, and Y. Yan, Quantum master-equation approach to quantum transport through mesoscopic systems, Phys. Rev. B 71(20), 205304 (2005)
https://doi.org/10.1103/PhysRevB.71.205304
113 C. Timm, Tunneling through molecules and quantum dots: Master-equation approaches, Phys. Rev. B 77(19), 195416 (2008)
https://doi.org/10.1103/PhysRevB.77.195416
114 O. Sauret, D. Feinberg, and T. Martin, Quantum master equations for the superconductor–quantum dot entangler, Phys. Rev. B 70(24), 245313 (2004)
https://doi.org/10.1103/PhysRevB.70.245313
115 H. B. Sun and G. Milburn, Quantum open-systems approach to current noise in resonant tunneling junctions, Phys. Rev. B 59(16), 10748 (1999)
https://doi.org/10.1103/PhysRevB.59.10748
116 C. Flindt, T. Novotny, and A. P. Jauho, Current noise in a vibrating quantum dot array, Phys. Rev. B 70(20), 205334 (2004)
https://doi.org/10.1103/PhysRevB.70.205334
117 S. A. Gurvitz, D. Mozyrsky, and G. P. Berman, Coherent effects in magnetotransport through Zeeman-split levels, Phys. Rev. B 72(20), 205341 (2005)
https://doi.org/10.1103/PhysRevB.72.205341
118 R. H?rtle and M. Thoss, Resonant electron transport in single-molecule junctions: Vibrational excitation, rectification, negative differential resistance, and local cooling, Phys. Rev. B 83(11), 115414 (2011)
https://doi.org/10.1103/PhysRevB.83.115414
119 B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Quantized conductance of point contacts in a twodimensional electron gas, Phys. Rev. Lett. 60(9), 848 (1988)
https://doi.org/10.1103/PhysRevLett.60.848
120 D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacockt, D. A. Ritchie, and G. A. C. Jones, One-dimensional transport and the quantisation of the ballistic resistance, J. Phys. Chem. 21(8), L209 (1988)
121 D. K. C. Macdonald, Spontaneous fluctuations, Rep. Prog. Phys. 12(1), 56 (1949)
https://doi.org/10.1088/0034-4885/12/1/304
122 C. Flindt, T. Novotny, and A. P. Jauho, Current noise spectrum of a quantum shuttle, Physica E 29(1–2), 411 (2005)
https://doi.org/10.1016/j.physe.2005.05.040
123 C. Flindt, T. Novotny, and A. P. Jauho, Full counting statistics of nano-electromechanical systems, Europhys. Lett. 69(3), 475 (2005)
https://doi.org/10.1209/epl/i2004-10351-x
124 M. Merlo, F. Haupt, F. Cavaliere, and M. Sassetti, SubPoissonian phononic population in a nanoelectromechanical system, New J. Phys. 10(2), 023008 (2008)
https://doi.org/10.1088/1367-2630/10/2/023008
125 D. A. Rodrigues, J. Imbers, and A. D. Armour, Quantum dynamics of a resonator driven by a superconducting single-electron transistor: A solid-state analogue of the micromaser, Phys. Rev. Lett. 98(6), 067204 (2007)
https://doi.org/10.1103/PhysRevLett.98.067204
126 A. Y. Smirnov, L. G. Mourokh, and N. J. M. Horing, Temperature dependence of electron transport through a quantum shuttle, Phys. Rev. B 69(15), 155310 (2004)
https://doi.org/10.1103/PhysRevB.69.155310
127 C. Weiss and W. Zwerger, Accuracy of a mechanical singleelectron shuttle, Europhys. Lett. 47(1), 97 (1999)
https://doi.org/10.1209/epl/i1999-00357-4
128 M. Galperin, A. Nitzan, and M. A. Ratner, Resonant inelastic tunneling in molecular junctions, Phys. Rev. B 73(4), 045314 (2006)
https://doi.org/10.1103/PhysRevB.73.045314
129 F. Domínguez, S. Kohler, and G. Platero, Phonon-mediated decoherence in triple quantum dot interferometers, Phys. Rev. B 83(23), 235319 (2011)
https://doi.org/10.1103/PhysRevB.83.235319
130 J. Friedel, The distribution of electrons round impurities in monovalent metals, Philos. Mag. 43(337), 153 (1952)
https://doi.org/10.1080/14786440208561086
131 J. M. Ziman, Principles of the Theory of Solids, Cambridge: Cambridge University Press, 2nd Ed., 1972, page 157
https://doi.org/10.1017/CBO9781139644075
132 G. D. Mahan, Many-Particle Physics, New York: Kluwer Academic/Plenum Publishers, 3rd Ed., 2000, page 195
133 J. S. Langer and V. Ambegaokar, Friedel sum rule for a system of interacting electrons, Phys. Rev. 121(4), 1090 (1961)
https://doi.org/10.1103/PhysRev.121.1090
134 A. L. Yeyati and M. Büttiker, Aharonov Bohm oscillations in a mesoscopic ring with a quantum dot, Phys. Rev. B 52(20), R14360 (1995)
https://doi.org/10.1103/PhysRevB.52.R14360
135 S. Bandopadhyay and P. S. Deo, Friedel sum rule for a singlechannel quantum wire, Phys. Rev. B 68(11), 113301 (2003)
https://doi.org/10.1103/PhysRevB.68.113301
136 M. Rontani, Friedel sum rule for an interacting multiorbital quantum dot, Phys. Rev. Lett. 97(7), 076801 (2006)
https://doi.org/10.1103/PhysRevLett.97.076801
137 P. S. Deo, Nondispersive backscattering in quantum wires, Phys. Rev. B 75(23), 235330 (2007)
https://doi.org/10.1103/PhysRevB.75.235330
138 M. R. Galpin and D. E. Logan, Anderson impurity model in a semiconductor, Phys. Rev. B 77(19), 195108 (2008)
https://doi.org/10.1103/PhysRevB.77.195108
139 B. Rosenow and Y. Gefen, Dephasing by a zero-temperature detector and the Friedel sum rule, Phys. Rev. Lett. 108(25), 256805 (2012)
https://doi.org/10.1103/PhysRevLett.108.256805
140 H. M. Pastawskia, L. E. F. Foa Torresa, and E. Medina, Electron–phonon interaction and electronic decoherence in molecular conductors, Chem. Phys. 281(23), 257 (2002)
https://doi.org/10.1016/S0301-0104(02)00565-7
141 A. Ueda and M. Eto, Resonant tunneling and Fano resonance in quantum dots with electron phonon interaction, Phys. Rev. B 73(23), 235353 (2006)
https://doi.org/10.1103/PhysRevB.73.235353
142 H. W. Lee, Generic transmission zeros and in-phase resonances in time-reversal symmetric single channel transport, Phys. Rev. Lett. 82(11), 2358 (1999)
https://doi.org/10.1103/PhysRevLett.82.2358
143 H. Akera, Aharonov–Bohm effect and electron correlation in quantum dots, Phys. Rev. B 47(11), 6835 (1993)
https://doi.org/10.1103/PhysRevB.47.6835
[1] Shmuel Gurvitz. Wave-function approach to Master equations for quantum transport and measurement[J]. Front. Phys. , 2017, 12(4): 120303-.
[2] Pei-Yun Yang,Wei-Min Zhang. Master equation approach to transient quantum transport in nanostructures[J]. Front. Phys. , 2017, 12(4): 127204-.
[3] Hai-Tao Cui (崔海涛),Xue-Xi Yi (衣学喜). Detecting ground-state degeneracy in many-body systems through qubit decoherence[J]. Front. Phys. , 2017, 12(1): 120304-.
[4] Xin-Qi Li. Number-resolved master equation approach to quantum measurement and quantum transport[J]. Front. Phys. , 2016, 11(4): 110307-.
[5] Qiao Bi. Quantum computation in triangular decoherence-free subdynamic space[J]. Front. Phys. , 2015, 10(2): 100304-.
[6] Hong-Yi Fan, Shuai Wang, Li-Yun Hu. Evolution of the single-mode squeezed vacuum state in amplitude dissipative channel[J]. Front. Phys. , 2014, 9(1): 74-81.
[7] Jun-Hua Chen(陈俊华), Hong-Yi Fan(范洪义). New application of non-Hermitian Hamiltonian operator in solving master equation for laser process[J]. Front. Phys. , 2012, 7(6): 632-636.
[8] Alice Sinatra, Jean-Christophe Dornstetter, Yvan Castin. Spin squeezing in Bose–Einstein condensates: Limits imposed by decoherence and non-zero temperature[J]. Front. Phys. , 2012, 7(1): 86-97.
[9] Wen YANG, Zhen-Yu WANG, Ren-Bao LIU. Preserving qubit coherence by dynamical decoupling[J]. Front. Phys. , 2011, 6(1): 2-14.
[10] Zbigniew FICEK, . Quantum entanglement and disentanglement of multi-atom systems[J]. Front. Phys. , 2010, 5(1): 26-81.
[11] Hua WEI(魏华), Zhi-jiao DENG(邓志娇), Wan-li YANG(杨万里), Fei ZHOU(周飞). Cavity quantum networks for quantum information processing in decoherence-free subspace[J]. Front Phys Chin, 2009, 4(1): 21-37.
[12] ZHAO Hong-kang, WANG Jian. Shot noises of spin and charge currents in a ferromagnet-quantum-dot-ferromagnet system[J]. Front. Phys. , 2008, 3(3): 280-293.
[13] TONG Zhao-yang, LIAO Ping, KUANG Le-man. Quantum repeaters based on CNOT gate under decoherence[J]. Front. Phys. , 2007, 2(4): 389-402.
[14] ZHAO Hong-kang. Shot noise in nano-electronic systems under the perturbation of ac fields[J]. Front. Phys. , 2007, 2(1): 55-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed