Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2015, Vol. 10 Issue (2) : 100304    https://doi.org/10.1007/s11467-015-0461-5
RESEARCH ARTICLE
Quantum computation in triangular decoherence-free subdynamic space
Qiao Bi()
Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China
 Download: PDF(195 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A formalism of quantum computing with 2000 qubits or more in decoherence-free subspaces is presented. The subspace is triangular with respect to the index related to the environment. The quantum states in the subspaces are projected states ruled by a subdynamic kinetic equation. These projected states can be used to perform general, large-scale decoherence-free quantum computing.

Keywords quantum information      subdynamics      decoherence-free     
Corresponding Author(s): Qiao Bi   
Issue Date: 13 March 2015
 Cite this article:   
Qiao Bi. Quantum computation in triangular decoherence-free subdynamic space[J]. Front. Phys. , 2015, 10(2): 100304.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0461-5
https://academic.hep.com.cn/fop/EN/Y2015/V10/I2/100304
1 D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I. O. Stamatescu, and H. D. Zeh, Decoherence and The Appearance of A Classical World in Quantum Theory, Heidelberg: Springer-Verlag, 1996
https://doi.org/10.1007/978-3-662-03263-3
2 P. Zanardi and M. Rasetti, Error avoiding quantum codes, Mod. Phys. Lett. B 11(25), 1085 (1997)
https://doi.org/10.1142/S0217984997001304
3 P. Zanardi and M. Rasetti, Noiseless quantum codes, Phys. Rev. Lett. 79(17), 3306 (1997)
https://doi.org/10.1103/PhysRevLett.79.3306
4 P. Zanardi, Virtual quantum subsystems, Phys. Rev. Lett 87(7), 077901 (2001)
https://doi.org/10.1103/PhysRevLett.87.077901
5 A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and C. Macchiavello, Stabilization of quantum computations by symmetrization, SIAM J. Comput. 26(5), 1541 (1997)
https://doi.org/10.1137/S0097539796302452
6 L. M. Duan and G. C. Guo, Preserving coherence in quantum computation by pairing quantum bits, Phys. Rev. Lett. 79(10), 1953 (1997)
https://doi.org/10.1103/PhysRevLett.79.1953
7 D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence Free Subspaces for Quantum Computation, Phys. Rev. Lett. 81(12), 2594 (1998)
https://doi.org/10.1103/PhysRevLett.81.2594
8 A. Shabani and D. A. Lidar, Maps for general open quantum systems and a theory of linear quantum error correction, Phys. Rev. A 80(1), 012309 (2009)
https://doi.org/10.1103/PhysRevA.80.012309
9 O. Oreshkov, T. A. Brun, D. A. Lidar, and H. Q. C. Fault-Tolerant, Fault-Tolerant Holonomic Quantum Computation, Phys. Rev. Lett. 102(7), 070502 (2009)
https://doi.org/10.1103/PhysRevLett.102.070502
10 T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computer, Nature 464, 45 (2010)
https://doi.org/10.1038/nature08812
11 P. Huang, X. Kong, N. Zhao, F. Shi, P. Wang, X. Rong, R. B. Liu, and J. Du, Observation of an anomalous decoherence effect in a quantum bath at room temperature, Nat. Commun. 2, 570 (2011)
https://doi.org/10.1038/ncomms1579
12 S. D. Filippo, Quantum computation using decoherence-free states of the physical operator algebra, Phys. Rev. A 62(5), 052307 (2000)
https://doi.org/10.1103/PhysRevA.62.052307
13 C. Sch?n and A. Beige, Analysis of a two-atom double-slit experiment based on environment-induced measurements, Phys. Rev. A 64(2), 023806 (2001)
https://doi.org/10.1103/PhysRevA.64.023806
14 L. Viola, Quantum control via encoded dynamical decoupling, Phys. Rev. A 66(1), 012307 (2002)
https://doi.org/10.1103/PhysRevA.66.012307
15 S. Gheorghiu-Svirschevski, From Davydov solitons to decoherence-free subspaces: Self-consistent propagation of coherent-product states, Phys. Rev. E 64(5), 051907 (2001)
https://doi.org/10.1103/PhysRevE.64.051907
16 Q. Bi, H. E. Ruda, and M. S. Zhan, Two-qubit quantum computing in a projected subspace, Phys. Rev. A 65(4), 042325 (2002)
https://doi.org/10.1103/PhysRevA.65.042325
17 M. S. Tame, M. Paternostro, and M. S. Kim, One-way quantum computing in a decoherence-free subspace, New J. Phys. 9(6), 201 (2007)
https://doi.org/10.1088/1367-2630/9/6/201
18 C. Bény, A. Kempf, and D. W. Kribs, Generalization of quantum error correction via the heisenberg picture, Phys. Rev. Lett. 98(10), 100502 (2007)
https://doi.org/10.1103/PhysRevLett.98.100502
19 D. A. Lidar and K. B. Whaley, in: Irreversible Quantum Dynamics, edited by F. Benatti and R. Floreanini, Leture Notes in Physics 622, 83, Berlin: Springer, 2003
20 H. K. Ng, D. A. Lidar, and J. Preskill, Combining dynamical decoupling with fault-tolerant quantum computation, Phys. Rev. A 84, 012305 (2001)
https://doi.org/10.1103/PhysRevA.84.012305
21 L. Viola, S. Lloyd, and E. Knill, Universal control of decoupled quantum systems, Phys. Rev. Lett. 83(23), 4888 (1999)
https://doi.org/10.1103/PhysRevLett.83.4888
22 M. S. Byrd and D. A. Lidar, Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing, Phys. Rev. Lett. 89(4), 047901 (2002)
https://doi.org/10.1103/PhysRevLett.89.047901
23 K. Khodjasteh and D. A. Lidar, Erratum: Quantum computing in the presence of spontaneous emission by a combined dynamical decoupling and quantum-error-correction strategy [Phys. Rev. A 68, 022322 (2003)], Phys. Rev. A 72(2), 029905 (2005)
https://doi.org/10.1103/PhysRevA.72.029905
24 A. Sinatra, J. C. Dornstetter, and Y. Castin, Spin squeezing in Bose–Einstein condensates: Limits imposed by decoherence and non-zero temperature, Front. Phys. 7, 86 (2012)
https://doi.org/10.1007/s11467-011-0219-7
25 H. Wei, Z. J. Deng, W. L. Yang, and F. Zhou, Cavity quantum networks for quantum information processing in decoherence-free subspace, Front. Phys. China 4(1), 21 (2009)
https://doi.org/10.1007/s11467-009-0010-1
26 N. Boulant, M. A. Pravia, E. M. Fortunato, T. F. Havel, and D. G. Cory, Experimental con-catenation of quantum error correction with decoupling, Quantum Inf. Proc. 1, 135 (2002)
https://doi.org/10.1023/A:1019623208633
27 J. Jing and L. A. Wu, Control of decoherence with no control, Scientific Reports 3, 2746 (2013)
https://doi.org/10.1038/srep02746
28 F. Dolde, V. Bergholm, , High-fidelity spin entanglement using optimal control, Nat. Commun. 3, 4371 (2014)
29 N. Y. Yao, C. R. Laumann, A. V. Gorshkov, H. Weimer, L. Jiang, J. I. Cirac, P. Zoller, and M. D. Lukin, Topologically protected quantum state transfer in a chiral spin liquid, Nat. Commun. 4, 1585 (2013)
https://doi.org/10.1038/ncomms2531
30 I. Antoniou and S. Tasaki, Generalized spectral decompositions of mixing dynamical systems, Int. J. Quantum Chem. 46(3), 425 (1993)
https://doi.org/10.1002/qua.560460311
31 T. Petrosky and I. Prigogine, Alternative formulation of classical and quantum dynamics for non-integrable systems, Physica A 175(1), 146 (1991)
https://doi.org/10.1016/0378-4371(91)90273-F
32 Qiao Bi, Subdynamics Theory and Application in Complex Dynamical System, Wuhan: Wuhan University of Technology Press, 1998 (in Chinese)
33 A. Bohm, H. D. Doebner, and P. Kielanowski, Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces, Heidelberg: Springer-Verlag, 1998
https://doi.org/10.1007/BFb0106772
34 A. Bohm and M. Gadella, Dirac Kets, Gamow Vector and Gel’fand Triplets, Heidelberg: Springer-Verlag, 1989
35 Q. Bi and H. E. Ruda, Quantum computing using entanglement states in a photonic band gap, J. Appl. Phys. 86(9), 5237 (1999)
https://doi.org/10.1063/1.371505
36 R. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics, New York: John Wiley & Sons, 1975.
37 Q. Bi, Some charicteristics and applications for quantum information, Journal of Modern Physics 03(09), 1070 (2012)
https://doi.org/10.4236/jmp.2012.39141
38 B. E. Kane, A silicon-based nuclear spin quantum computer, Nature 393(6681), 133 (1998)
https://doi.org/10.1038/30156
39 R. Vrijen, E. Yablonovitch, K. Wang, H. W. Jiang, A. Balandin, V. Roychowduhory, T. Mor, and D. DiVincenzo, Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures, Phys. Rev. A 62(1), 012306 (2000)
https://doi.org/10.1103/PhysRevA.62.012306
40 D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
https://doi.org/10.1103/PhysRevA.57.120
41 W. A. Coish and D. Loss, Quantum computing with spins in solids, arXiv: cond-mat/0606550 (2006)
42 D. Kribs, R. La.amme, and D. Poulin, Unified and generalized approach to quantum error correction, Phys. Rev. Lett. 94(18), 180501 (2005)
https://doi.org/10.1103/PhysRevLett.94.180501
43 D. W. Kribs, R. La.amme, D. Poulin, and M. Lesosky, Operator quantum error correction, Quantum Inf. Compu. 6, 382 (2006)
44 C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54(5), 3824 (1996)
https://doi.org/10.1103/PhysRevA.54.3824
[1] Pingyu Zhu, Qilin Zheng, Shichuan Xue, Chao Wu, Xinyao Yu, Yang Wang, Yingwen Liu, Xiaogang Qiang, Junjie Wu, Ping Xu. On-chip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs[J]. Front. Phys. , 2020, 15(6): 61501-.
[2] Luis Roa, Andrea Espinoza, Ariana Muñoz, María L. Ladrón de Guevara. Recovering information in probabilistic quantum teleportation[J]. Front. Phys. , 2019, 14(6): 61602-.
[3] Xiao-Tao Mo, Zheng-Yuan Xue. Single-step multipartite entangled states generation from coupled circuit cavities[J]. Front. Phys. , 2019, 14(3): 31602-.
[4] Gaurav Bhole, Jonathan A. Jones. Practical pulse engineering: Gradient ascent without matrix exponentiation[J]. Front. Phys. , 2018, 13(3): 130312-.
[5] Jing-Wei Zhou, Peng-Fei Wang, Fa-Zhan Shi, Pu Huang, Xi Kong, Xiang-Kun Xu, Qi Zhang, Zi-Xiang Wang, Xing Rong, Jiang-Feng Du. Quantum information processing and metrology with color centers in diamonds[J]. Front. Phys. , 2014, 9(5): 587-597.
[6] Marek Zukowski. Temporal inequalities for sequential multi-time actions in quantum information processing[J]. Front. Phys. , 2014, 9(5): 629-633.
[7] Xin-hua PENG (彭新华), Dieter SUTER, . Spin qubits for quantum simulations [J]. Front. Phys. , 2010, 5(1): 1-25.
[8] Qiao BI (毕桥), Jin-qing FANG (方锦清), Gui-ping LIU (刘桂平). Quantum information density and network[J]. Front Phys Chin, 2009, 4(1): 38-48.
[9] Hua WEI(魏华), Zhi-jiao DENG(邓志娇), Wan-li YANG(杨万里), Fei ZHOU(周飞). Cavity quantum networks for quantum information processing in decoherence-free subspace[J]. Front Phys Chin, 2009, 4(1): 21-37.
[10] KIELPINSKI Dave. Ion-trap quantum information processing: experimental status[J]. Front. Phys. , 2008, 3(4): 365-381.
[11] WAN Jin-yin, WANG Yu-zhu, LIU Liang. Ion trapping for quantum information processing[J]. Front. Phys. , 2007, 2(4): -.
[12] YANG Shuo, SONG Zhi, SUN Chang-pu. Quantum dynamics of tight-binding networks coherently controlled by external fields[J]. Front. Phys. , 2007, 2(1): 1-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed