|
|
Quantum computation in triangular decoherence-free subdynamic space |
Qiao Bi( ) |
Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China |
|
|
Abstract A formalism of quantum computing with 2000 qubits or more in decoherence-free subspaces is presented. The subspace is triangular with respect to the index related to the environment. The quantum states in the subspaces are projected states ruled by a subdynamic kinetic equation. These projected states can be used to perform general, large-scale decoherence-free quantum computing.
|
Keywords
quantum information
subdynamics
decoherence-free
|
Corresponding Author(s):
Qiao Bi
|
Issue Date: 13 March 2015
|
|
1 |
D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I. O. Stamatescu, and H. D. Zeh, Decoherence and The Appearance of A Classical World in Quantum Theory, Heidelberg: Springer-Verlag, 1996
https://doi.org/10.1007/978-3-662-03263-3
|
2 |
P. Zanardi and M. Rasetti, Error avoiding quantum codes, Mod. Phys. Lett. B 11(25), 1085 (1997)
https://doi.org/10.1142/S0217984997001304
|
3 |
P. Zanardi and M. Rasetti, Noiseless quantum codes, Phys. Rev. Lett. 79(17), 3306 (1997)
https://doi.org/10.1103/PhysRevLett.79.3306
|
4 |
P. Zanardi, Virtual quantum subsystems, Phys. Rev. Lett 87(7), 077901 (2001)
https://doi.org/10.1103/PhysRevLett.87.077901
|
5 |
A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and C. Macchiavello, Stabilization of quantum computations by symmetrization, SIAM J. Comput. 26(5), 1541 (1997)
https://doi.org/10.1137/S0097539796302452
|
6 |
L. M. Duan and G. C. Guo, Preserving coherence in quantum computation by pairing quantum bits, Phys. Rev. Lett. 79(10), 1953 (1997)
https://doi.org/10.1103/PhysRevLett.79.1953
|
7 |
D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence Free Subspaces for Quantum Computation, Phys. Rev. Lett. 81(12), 2594 (1998)
https://doi.org/10.1103/PhysRevLett.81.2594
|
8 |
A. Shabani and D. A. Lidar, Maps for general open quantum systems and a theory of linear quantum error correction, Phys. Rev. A 80(1), 012309 (2009)
https://doi.org/10.1103/PhysRevA.80.012309
|
9 |
O. Oreshkov, T. A. Brun, D. A. Lidar, and H. Q. C. Fault-Tolerant, Fault-Tolerant Holonomic Quantum Computation, Phys. Rev. Lett. 102(7), 070502 (2009)
https://doi.org/10.1103/PhysRevLett.102.070502
|
10 |
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computer, Nature 464, 45 (2010)
https://doi.org/10.1038/nature08812
|
11 |
P. Huang, X. Kong, N. Zhao, F. Shi, P. Wang, X. Rong, R. B. Liu, and J. Du, Observation of an anomalous decoherence effect in a quantum bath at room temperature, Nat. Commun. 2, 570 (2011)
https://doi.org/10.1038/ncomms1579
|
12 |
S. D. Filippo, Quantum computation using decoherence-free states of the physical operator algebra, Phys. Rev. A 62(5), 052307 (2000)
https://doi.org/10.1103/PhysRevA.62.052307
|
13 |
C. Sch?n and A. Beige, Analysis of a two-atom double-slit experiment based on environment-induced measurements, Phys. Rev. A 64(2), 023806 (2001)
https://doi.org/10.1103/PhysRevA.64.023806
|
14 |
L. Viola, Quantum control via encoded dynamical decoupling, Phys. Rev. A 66(1), 012307 (2002)
https://doi.org/10.1103/PhysRevA.66.012307
|
15 |
S. Gheorghiu-Svirschevski, From Davydov solitons to decoherence-free subspaces: Self-consistent propagation of coherent-product states, Phys. Rev. E 64(5), 051907 (2001)
https://doi.org/10.1103/PhysRevE.64.051907
|
16 |
Q. Bi, H. E. Ruda, and M. S. Zhan, Two-qubit quantum computing in a projected subspace, Phys. Rev. A 65(4), 042325 (2002)
https://doi.org/10.1103/PhysRevA.65.042325
|
17 |
M. S. Tame, M. Paternostro, and M. S. Kim, One-way quantum computing in a decoherence-free subspace, New J. Phys. 9(6), 201 (2007)
https://doi.org/10.1088/1367-2630/9/6/201
|
18 |
C. Bény, A. Kempf, and D. W. Kribs, Generalization of quantum error correction via the heisenberg picture, Phys. Rev. Lett. 98(10), 100502 (2007)
https://doi.org/10.1103/PhysRevLett.98.100502
|
19 |
D. A. Lidar and K. B. Whaley, in: Irreversible Quantum Dynamics, edited by F. Benatti and R. Floreanini, Leture Notes in Physics 622, 83, Berlin: Springer, 2003
|
20 |
H. K. Ng, D. A. Lidar, and J. Preskill, Combining dynamical decoupling with fault-tolerant quantum computation, Phys. Rev. A 84, 012305 (2001)
https://doi.org/10.1103/PhysRevA.84.012305
|
21 |
L. Viola, S. Lloyd, and E. Knill, Universal control of decoupled quantum systems, Phys. Rev. Lett. 83(23), 4888 (1999)
https://doi.org/10.1103/PhysRevLett.83.4888
|
22 |
M. S. Byrd and D. A. Lidar, Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing, Phys. Rev. Lett. 89(4), 047901 (2002)
https://doi.org/10.1103/PhysRevLett.89.047901
|
23 |
K. Khodjasteh and D. A. Lidar, Erratum: Quantum computing in the presence of spontaneous emission by a combined dynamical decoupling and quantum-error-correction strategy [Phys. Rev. A 68, 022322 (2003)], Phys. Rev. A 72(2), 029905 (2005)
https://doi.org/10.1103/PhysRevA.72.029905
|
24 |
A. Sinatra, J. C. Dornstetter, and Y. Castin, Spin squeezing in Bose–Einstein condensates: Limits imposed by decoherence and non-zero temperature, Front. Phys. 7, 86 (2012)
https://doi.org/10.1007/s11467-011-0219-7
|
25 |
H. Wei, Z. J. Deng, W. L. Yang, and F. Zhou, Cavity quantum networks for quantum information processing in decoherence-free subspace, Front. Phys. China 4(1), 21 (2009)
https://doi.org/10.1007/s11467-009-0010-1
|
26 |
N. Boulant, M. A. Pravia, E. M. Fortunato, T. F. Havel, and D. G. Cory, Experimental con-catenation of quantum error correction with decoupling, Quantum Inf. Proc. 1, 135 (2002)
https://doi.org/10.1023/A:1019623208633
|
27 |
J. Jing and L. A. Wu, Control of decoherence with no control, Scientific Reports 3, 2746 (2013)
https://doi.org/10.1038/srep02746
|
28 |
F. Dolde, V. Bergholm, , High-fidelity spin entanglement using optimal control, Nat. Commun. 3, 4371 (2014)
|
29 |
N. Y. Yao, C. R. Laumann, A. V. Gorshkov, H. Weimer, L. Jiang, J. I. Cirac, P. Zoller, and M. D. Lukin, Topologically protected quantum state transfer in a chiral spin liquid, Nat. Commun. 4, 1585 (2013)
https://doi.org/10.1038/ncomms2531
|
30 |
I. Antoniou and S. Tasaki, Generalized spectral decompositions of mixing dynamical systems, Int. J. Quantum Chem. 46(3), 425 (1993)
https://doi.org/10.1002/qua.560460311
|
31 |
T. Petrosky and I. Prigogine, Alternative formulation of classical and quantum dynamics for non-integrable systems, Physica A 175(1), 146 (1991)
https://doi.org/10.1016/0378-4371(91)90273-F
|
32 |
Qiao Bi, Subdynamics Theory and Application in Complex Dynamical System, Wuhan: Wuhan University of Technology Press, 1998 (in Chinese)
|
33 |
A. Bohm, H. D. Doebner, and P. Kielanowski, Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces, Heidelberg: Springer-Verlag, 1998
https://doi.org/10.1007/BFb0106772
|
34 |
A. Bohm and M. Gadella, Dirac Kets, Gamow Vector and Gel’fand Triplets, Heidelberg: Springer-Verlag, 1989
|
35 |
Q. Bi and H. E. Ruda, Quantum computing using entanglement states in a photonic band gap, J. Appl. Phys. 86(9), 5237 (1999)
https://doi.org/10.1063/1.371505
|
36 |
R. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics, New York: John Wiley & Sons, 1975.
|
37 |
Q. Bi, Some charicteristics and applications for quantum information, Journal of Modern Physics 03(09), 1070 (2012)
https://doi.org/10.4236/jmp.2012.39141
|
38 |
B. E. Kane, A silicon-based nuclear spin quantum computer, Nature 393(6681), 133 (1998)
https://doi.org/10.1038/30156
|
39 |
R. Vrijen, E. Yablonovitch, K. Wang, H. W. Jiang, A. Balandin, V. Roychowduhory, T. Mor, and D. DiVincenzo, Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures, Phys. Rev. A 62(1), 012306 (2000)
https://doi.org/10.1103/PhysRevA.62.012306
|
40 |
D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
https://doi.org/10.1103/PhysRevA.57.120
|
41 |
W. A. Coish and D. Loss, Quantum computing with spins in solids, arXiv: cond-mat/0606550 (2006)
|
42 |
D. Kribs, R. La.amme, and D. Poulin, Unified and generalized approach to quantum error correction, Phys. Rev. Lett. 94(18), 180501 (2005)
https://doi.org/10.1103/PhysRevLett.94.180501
|
43 |
D. W. Kribs, R. La.amme, D. Poulin, and M. Lesosky, Operator quantum error correction, Quantum Inf. Compu. 6, 382 (2006)
|
44 |
C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54(5), 3824 (1996)
https://doi.org/10.1103/PhysRevA.54.3824
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|