|
|
On-chip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs |
Pingyu Zhu1, Qilin Zheng1, Shichuan Xue1, Chao Wu1, Xinyao Yu1, Yang Wang1, Yingwen Liu1, Xiaogang Qiang2,1, Junjie Wu1, Ping Xu1,3( ) |
1. Institute for Quantum Information and State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China 2. National Innovation Institute of Defense Technology, AMS, Beijing 100071, China 3. National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract One of the most important multipartite entangled states, Greenberger–Horne–Zeilinger state (GHZ), serves as a fundamental resource for quantum foundation test, quantum communication and quantum computation. To increase the number of entangled particles, significant experimental efforts should been invested due to the complexity of optical setup and the difficulty in maintaining the coherence condition for high-fidelity GHZ state. Here, we propose an ultra-integrated scalable on-chip GHZ state generation scheme based on frequency combs. By designing several microrings pumped by different lasers, multiple partially overlapped quantum frequency combs are generated to supply as the basis for on-chip polarization-encoded GHZ state with each qubit occupying a certain spectral mode. Both even and odd numbers of GHZ states can be engineered with constant small number of integrated components and easily scaled up on the same chip by only adjusting one of the pump wavelengths. In addition, we give the on-chip design of projection measurement for characterizing GHZ states and show the reconfigurability of the state. Our proposal is rather simple and feasible within the existing fabrication technologies and we believe it will boost the development of multiphoton technologies.
|
Keywords
quantum information
Greenberger–Horne–Zeilinger state
frequency comb
|
Corresponding Author(s):
Ping Xu
|
Just Accepted Date: 16 October 2020
Issue Date: 25 November 2020
|
|
1 |
A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)
https://doi.org/10.1103/PhysRev.47.777
|
2 |
D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Bell’s theorem without inequalities, Am. J. Phys. 58(12), 1131 (1990)
https://doi.org/10.1119/1.16243
|
3 |
J. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement, Nature 403(6769), 515 (2000)
https://doi.org/10.1038/35000514
|
4 |
A. R. Calderbank and P. W. Shor, Good quantum error correcting codes exist, Phys. Rev. A 54(2), 1098 (1996)
https://doi.org/10.1103/PhysRevA.54.1098
|
5 |
R. Raussendorf, J. Harrington, and K. Goyal, Topological fault-tolerance in cluster state quantum computation, New J. Phys. 9(6), 199 (2007)
https://doi.org/10.1088/1367-2630/9/6/199
|
6 |
A. Farouk, J. Batle, M. Elhoseny, M. Naseri, M. Lone, A. Fedorov, M. Alkhambashi, S. H. Ahmed, and M. AbdelAty, Robust general nuser authentication scheme in a centralized quantum communication network via generalized GHZ states, Front. Phys. 13(2), 130306 (2018)
https://doi.org/10.1007/s11467-017-0717-3
|
7 |
K. Wang, X. T. Yu, and Z. C. Zhang, Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state, Front. Phys. 13(5), 130320 (2018)
https://doi.org/10.1007/s11467-018-0832-9
|
8 |
X. Hu, C. Zhang, C. Zhang, B. Liu, Y. Huang, Y. Han, C. Li, and G. Guo, Experimental certification for nonclassical teleportation, Quantum Eng. 1(2), e13 (2019)
https://doi.org/10.1002/que2.13
|
9 |
J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, Multi-photon entanglement and interferometry, Rev. Mod. Phys. 84(2), 777 (2012)
https://doi.org/10.1103/RevModPhys.84.777
|
10 |
Y. Huang, B. Liu, L. Peng, Y. Li, L. Li, C. Li, and G. Guo, Experimental generation of an eight-photon Greenberger– Horne–Zeilinger state, Nat. Commun. 2(1), 546 (2011)
https://doi.org/10.1038/ncomms1556
|
11 |
X. L. Wang, L. K. Chen, W. Li, H. L. Huang, C. Liu, C. Chen, Y. H. Luo, Z. E. Su, D. Wu, Z. D. Li, H. Lu, Y. Hu, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, Y. A. Chen, C. Y. Lu, and J. W. Pan, Experimental ten-photon entanglement, Phys. Rev. Lett. 117(21), 210502 (2016)
https://doi.org/10.1103/PhysRevLett.117.210502
|
12 |
H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, 12-photon entanglement and scalable scattershot boson sampling with optimal entangledphoton pairs from parametric down-conversion, Phys. Rev. Lett. 121(25), 250505 (2018)
https://doi.org/10.1103/PhysRevLett.121.250505
|
13 |
X. L. Wang, Y. H. Luo, H. L. Huang, M. C. Chen, Z. E. Su, C. Liu, C. Chen, W. Li, Y. Q. Fang, X. Jiang, J. Zhang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, 18-qubit entanglement with six photons’ three degrees of freedom, Phys. Rev. Lett. 120(26), 260502 (2018)
https://doi.org/10.1103/PhysRevLett.120.260502
|
14 |
M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits, Nat. Photonics 12(12), 759 (2018)
https://doi.org/10.1038/s41566-018-0257-6
|
15 |
Q. Zhang, P. Xu, and S. Zhu, Quantum photonic network on chip, Chin. Phys. B 27(5), 054207 (2018)
https://doi.org/10.1088/1674-1056/27/5/054207
|
16 |
J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, Integrated photonic quantum technologies, Nat. Photonics 14(5), 273 (2020)
https://doi.org/10.1038/s41566-019-0532-1
|
17 |
X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, L. Thomas, O. Sean, K. Laurent, G. D. Marshall, S. Raffaele, and T. C. Ralph, Large-scale silicon quantum photonics implementing arbitrary two-qubit processing, Nat. Photonics 12(9), 534 (2018)
https://doi.org/10.1038/s41566-018-0236-y
|
18 |
J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, Multidimensional quantum entanglement with large-scale integrated optics, Science 360(6386), 285 (2018)
https://doi.org/10.1126/science.aar7053
|
19 |
R. Terry, Why I am optimistic about the silicon-photonic route to quantum computing, APL Photonics 2, 030901 (2016)
https://doi.org/10.1063/1.4976737
|
20 |
T. Feng, X. Zhang, Y. Tian, and Q. Feng, On-chip multiphoton entangled states by path identity, Int. J. Theor. Phys. 58(11), 3726 (2019)
https://doi.org/10.1007/s10773-019-04243-z
|
21 |
J. C. Adcock, C. Vigliar, R. Santagati, J. W. Silverstone, and M. G. Thompson, Programmable four-photon graph states on a silicon chip, Nat. Commun. 10(1), 3528 (2019)
https://doi.org/10.1038/s41467-019-11489-y
|
22 |
P. Zhu, S. Xue, Q. Zheng, C. Wu, X. Yu, Y. Wang, Y. Liu, X. Qiang, M. Deng, J. Wu, and P. Xu, Reconfigurable multiphoton entangled states based on quantum photonic chips, Opt. Express 28(18), 26792 (2020)
https://doi.org/10.1364/OE.402383
|
23 |
M. Kues, C. Reimer, P. Roztocki, L. R. Cortes, S. Sciara, B. Wetzel, Y. Zhang, A. C. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, On-chip generation of high-dimensional entangled quantum states and their coherent control, Nature 546(7660), 622 (2017)
https://doi.org/10.1038/nature22986
|
24 |
C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. W. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, Generation of multi-photon entangled quantum states by means of integrated frequency combs, Science 351(6278), 1176 (2016)
https://doi.org/10.1126/science.aad8532
|
25 |
M. Chen, N. C. Menicucci, and O. Pfister, Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb, Phys. Rev. Lett. 112(12), 120505 (2014)
https://doi.org/10.1103/PhysRevLett.112.120505
|
26 |
B. H. Wu, R. N. Alexander, S. Liu, and Z. Zhang, Quantum computing with multidimensional continuous-variable cluster states in a scalable photonic platform, Phys. Rev. Research 2(2), 023138 (2020)
https://doi.org/10.1103/PhysRevResearch.2.023138
|
27 |
M. Krenn, X. Gu, and A. Zeilinger, Quantum experiments and graphs: Multiparty states as coherent super-positions of perfect matchings, Phys. Rev. Lett. 119(24), 240403 (2017)
https://doi.org/10.1103/PhysRevLett.119.240403
|
28 |
E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
https://doi.org/10.1038/35051009
|
29 |
X. Gu, M. Erhard, A. Zeilinger, and M. Krenn, Quantum experiments and graphs (ii): Quantum interference, computation, and state generation, Proc. Natl. Acad. Sci. USA 116(10), 4147 (2019)
https://doi.org/10.1073/pnas.1815884116
|
30 |
X. Gu, L. Chen, A. Zeilinger, and M. Krenn, Quantum experiments and graphs (iii): High-dimensional and multiparticle entanglement, Phys. Rev. A 99(3), 032338 (2019)
https://doi.org/10.1103/PhysRevA.99.032338
|
31 |
C. Wu, Y. Liu, X. Gu, S. Xue, X. Yu, Y. Kong, X. Qiang, J. Wu, Z. Zhu, and P. Xu, Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings, Chin. Phys. B 28(10), 104211 (2019)
https://doi.org/10.1088/1674-1056/ab3f9b
|
32 |
C. Wu, Y. Liu, X. Gu, X. Yu, Y. Kong, Y. Wang, X. Qiang, J. Wu, Z. Zhu, X. Yang, and P. Xu, Bright photon-pair source based on a silicon dual-Mach–Zehnder microring, Sci. China Phys. Mech. Astron. 63(2), 220362 (2020)
https://doi.org/10.1007/s11433-019-1429-1
|
33 |
Y. Liu, C. Wu, X. Gu, Y. Kong, X. Yu, R. Ge, X. Cai, X. Qiang, J. Wu, X. Yang, and P. Xu, High-spectral-purity photon generation from a dual-interferometer-coupled silicon microring, Opt. Lett. 45(1), 73 (2020)
https://doi.org/10.1364/OL.45.000073
|
34 |
P. Zhu, Y. Liu, C. Wu, S. Xue, X. Yu, Q. Zheng, Y. Wang, X. Qiang, J. Wu, and P. Xu, Near 100% spectral-purity photons from reconfigurable micro-rings, Chin. Phys. B 29, 114201 (2020)
https://doi.org/10.1088/1674-1056/abbb28
|
35 |
D. Taillaert, P. I. Harold Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, A compact twodimensional grating coupler used as a polarization splitter, IEEE Photonics Technol. Lett. 15(9), 1249 (2003)
https://doi.org/10.1109/LPT.2003.816671
|
36 |
J. Wang, D. Bonneau, M. Villa, J. W. Silverstone, R. Santagati, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, Chip-to-chip quantum photonic interconnect by path-polarization interconversion, Optica 3(4), 407 (2016)
https://doi.org/10.1364/OPTICA.3.000407
|
37 |
M. Liscidini and J. E. Sipe, Scalable and efficient source of entangled frequency bins, Opt. Lett. 44(11), 2625 (2019)
https://doi.org/10.1364/OL.44.002625
|
38 |
X. Gu, L. Chen, and M. Krenn, Quantum experiments and hypergraphs: Multiphoton sources for quantum interference, quantum computation, and quantum entanglement, Phys. Rev. A 101(3), 033816 (2020)
https://doi.org/10.1103/PhysRevA.101.033816
|
39 |
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Measurement of qubits, Phys. Rev. A 64(5), 052312 (2001)
https://doi.org/10.1103/PhysRevA.64.052312
|
40 |
O. Gühne and G. Toth, Entanglement detection, Phys. Rep. 474(1–6), 1 (2009)
https://doi.org/10.1016/j.physrep.2009.02.004
|
41 |
X. Chen, L. Jiang, and Z. Xu, Precise detection of multipartite entanglement in four-qubit Greenberger–Horne– Zeilinger diagonal states, Front. Phys. 13(5), 130317 (2018)
https://doi.org/10.1007/s11467-018-0799-6
|
42 |
J. Tang, Z. Hou, Q. Xu, G. Xiang, C. Li, and G. Guo, Polarization-independent coherent spatial-temporal interface with low loss, Phys. Rev. Appl. 12(6), 064058 (2019)
https://doi.org/10.1103/PhysRevApplied.12.064058
|
43 |
M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Experimental realization of any discrete unitary operator, Phys. Rev. Lett. 73(1), 58 (1994)
https://doi.org/10.1103/PhysRevLett.73.58
|
44 |
L. Lu, L. Xia, Z. Chen, L. Chen, T. Yu, T. Tao, W. Ma, Y. Pan, X. Cai, Y. Lu, S. Zhu, and X. S. Ma, Threedimensional entanglement on a silicon chip, NPJ Quantum Inf. 6(1), 30 (2020)
https://doi.org/10.1038/s41534-020-0260-x
|
45 |
L. Xiao, G. Long, F. Deng, and J. Pan, Efficient multiparty quantum-secret-sharing schemes, Phys. Rev. A 69(5), 052307 (2004)
https://doi.org/10.1103/PhysRevA.69.052307
|
46 |
Z. Man, Y. Xia, and N. B. An, Quantum secure direct communication by using GHZ states and entanglement swapping, J. Phys. B 39(18), 3855 (2006)
https://doi.org/10.1088/0953-4075/39/18/015
|
47 |
S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hubel, and R. Ursin, An entanglement-based wavelengthmultiplexed quantum communication network, Nature 564(7735), 225 (2018)
https://doi.org/10.1038/s41586-018-0766-y
|
48 |
P. Arrighi and L. Salvail, Blind quantum computation, Int. J. Quant. Inf. 04(05), 883 (2006)
https://doi.org/10.1142/S0219749906002171
|
49 |
S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, Demonstration of blind quantum computing, Science 335(6066), 303 (2012)
https://doi.org/10.1126/science.1214707
|
50 |
J. M. Lukens and P. Lougovski, Frequency-encoded photonic qubits for scalable quantum information processing, Optica 4(1), 8 (2017)
https://doi.org/10.1364/OPTICA.4.000008
|
51 |
H. H. Lu, J. M. Lukens, N. A. Peters, B. P. Williams, A. M. Weiner, and P. Lougovski, Quantum interference and correlation control of frequency-bin qubits, Optica 5(11), 1455 (2018)
https://doi.org/10.1364/OPTICA.5.001455
|
52 |
S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, Polarization-entanglement-conserving frequency conversion of photons, Phys. Rev. A 85(1), 013845 (2012)
https://doi.org/10.1103/PhysRevA.85.013845
|
53 |
M. Krenn, J. Kottmann, N. Tischler, and A. Aspuru-Guzik, Conceptual understanding through efficient inverse-design of quantum optical experiments, arXiv: 2005.06443 [quant-ph] (2020)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|