Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (5) : 629-633    https://doi.org/10.1007/s11467-013-0400-2
RESEARCH ARTICLE
Temporal inequalities for sequential multi-time actions in quantum information processing
Marek Zukowski1,2,*()
1. Institute for Theoretical Physics and Astrophysics, Uniwersytet Gdański, PL-80-952 Gdańsk, Poland
2. Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(164 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A new kind of temporal inequalities are discussed, which apply to algorithmic processes, involving a finite memory processing unit. They are an alternative to the Leggett–Grag ones, as well as to the modified ones by Brukner et al. If one considers comparison of quantum and classical processes involving systems of finite memory (of the same capacity in both cases), the inequalities give a clear message why we can expect quantum speed-up. In a classical process one always has clearly defined values of possible measurements, or in terms of the information processing language, if we have a sequential computations of some function depending on data arriving at each step on an algorithm, the function always has a clearly defined value. In the quantum case only the final value, after the end of the algorithm, is defined. All intermediate values, in agreement with Bohr’s complementarity, cannot be ascribed a definite value.

Keywords temporal inequalities      quantum information     
Corresponding Author(s): Marek Zukowski   
Issue Date: 15 October 2014
 Cite this article:   
Marek Zukowski. Temporal inequalities for sequential multi-time actions in quantum information processing[J]. Front. Phys. , 2014, 9(5): 629-633.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0400-2
https://academic.hep.com.cn/fop/EN/Y2014/V9/I5/629
1 ?. Brukner, S. Taylor, S. Cheung, and V. Vedral, Quantum entanglement in time, arXiv: quant-ph/0402127, 2004
2 A. J. Leggett and A. Garg, Quantum Mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett., 1985, 54(9): 857
https://doi.org/10.1103/PhysRevLett.54.857
3 A. J. Leggett, Testing the limits of quantum mechanics: Motivation, state of play, prospects, J. Phys.: Condens. Matter, 2002, 14(15): R415
https://doi.org/10.1088/0953-8984/14/15/201
4 A. J. Leggett, Realism and the physical world, Rep. Prog. Phys., 2008, 71(2): 022001
https://doi.org/10.1088/0034-4885/71/2/022001
5 M. ?ukowski, Quantum Speedup and Temporal Inequalities for Sequential Actions, in: Computable Universe, edited by H. Zenil, World Scientific/Imperial College, Singapore, London, 2012
https://doi.org/10.1142/9789814374309_0030
6 The author is indebted to the Anonymous Referee for pointing that finite memory is the assumption, not dependence on initial state.
7 M. Kleinmann, O. Gühne, J. R. Portillo, J. A. Larsson, and A. Cabello, Memory cost of quantum contextuality, New J Phys., 2011, 13(11): 113011
https://doi.org/10.1088/1367-2630/13/11/113011
8 P. Trojek, Ch. Schmid, M. Bourennane, ?. Brukner, M. ?ukowski, and H. Weinfurter, Experimental quantum communication complexity, Phys. Rev. A, 2005, 72(5): 050305(R)
https://doi.org/10.1103/PhysRevA.72.050305
9 ?. Brukner, M. ?ukowski, J. W. Pan, and A. Zeilinger, Bell’s inequality and quantum communication complexity, Phys. Rev. Lett., 2004, 92(12): 127901
https://doi.org/10.1103/PhysRevLett.92.127901
10 J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. ?ukowski, Multiphoton entanglement and interferometry, Rev. Mod. Phys., 2012, 84(2): 777
https://doi.org/10.1103/RevModPhys.84.777
11 A. Shafiee and M. Golshani, Single-particle Bell-type inequality, Annales Fond. Broglie, 2003, 28: 105
12 F. Morikoshi, Informationtheoretic temporal Bell inequality and quantum computation, Phys. Rev. A, 2006, 73(5): 052308
https://doi.org/10.1103/PhysRevA.73.052308
13 J. Kofler, Quantum violation of macroscopic realism and the transition to classical physics, Ph. D. Thesis, arXiv: 0812.0238, 2008
14 J. Koflerand ?. Brukner, The conditions for quantum violation of macroscopic realism, Phys. Rev. Lett., 2008, 101(9): 090403
https://doi.org/10.1103/PhysRevLett.101.090403
15 J. Kofler, N. Buric, and ?. Brukner, Macroscopic realism and spatiotemporal continuity, arXiv: 0906.4465, 2009
[1] Pingyu Zhu, Qilin Zheng, Shichuan Xue, Chao Wu, Xinyao Yu, Yang Wang, Yingwen Liu, Xiaogang Qiang, Junjie Wu, Ping Xu. On-chip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs[J]. Front. Phys. , 2020, 15(6): 61501-.
[2] Luis Roa, Andrea Espinoza, Ariana Muñoz, María L. Ladrón de Guevara. Recovering information in probabilistic quantum teleportation[J]. Front. Phys. , 2019, 14(6): 61602-.
[3] Xiao-Tao Mo, Zheng-Yuan Xue. Single-step multipartite entangled states generation from coupled circuit cavities[J]. Front. Phys. , 2019, 14(3): 31602-.
[4] Gaurav Bhole, Jonathan A. Jones. Practical pulse engineering: Gradient ascent without matrix exponentiation[J]. Front. Phys. , 2018, 13(3): 130312-.
[5] Qiao Bi. Quantum computation in triangular decoherence-free subdynamic space[J]. Front. Phys. , 2015, 10(2): 100304-.
[6] Jing-Wei Zhou, Peng-Fei Wang, Fa-Zhan Shi, Pu Huang, Xi Kong, Xiang-Kun Xu, Qi Zhang, Zi-Xiang Wang, Xing Rong, Jiang-Feng Du. Quantum information processing and metrology with color centers in diamonds[J]. Front. Phys. , 2014, 9(5): 587-597.
[7] Xin-hua PENG (彭新华), Dieter SUTER, . Spin qubits for quantum simulations [J]. Front. Phys. , 2010, 5(1): 1-25.
[8] Qiao BI (毕桥), Jin-qing FANG (方锦清), Gui-ping LIU (刘桂平). Quantum information density and network[J]. Front Phys Chin, 2009, 4(1): 38-48.
[9] Hua WEI(魏华), Zhi-jiao DENG(邓志娇), Wan-li YANG(杨万里), Fei ZHOU(周飞). Cavity quantum networks for quantum information processing in decoherence-free subspace[J]. Front Phys Chin, 2009, 4(1): 21-37.
[10] KIELPINSKI Dave. Ion-trap quantum information processing: experimental status[J]. Front. Phys. , 2008, 3(4): 365-381.
[11] WAN Jin-yin, WANG Yu-zhu, LIU Liang. Ion trapping for quantum information processing[J]. Front. Phys. , 2007, 2(4): -.
[12] YANG Shuo, SONG Zhi, SUN Chang-pu. Quantum dynamics of tight-binding networks coherently controlled by external fields[J]. Front. Phys. , 2007, 2(1): 1-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed