Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (1) : 12601    https://doi.org/10.1007/s11467-018-0861-4
RESEARCH ARTICLE
Photon-phonon squeezing and entanglement in a cavity optomechanical system with a flying atom
Jun-Hao Liu, Yu-Bao Zhang, Ya-Fei Yu, Zhi-Ming Zhang()
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials & Devices (SIPSE), and Guangdong Provincial Key Laboratory of Quantum Engineering & Quantum Materials, South China Normal University, Guangzhou 510006, China
 Download: PDF(4383 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the quadrature squeezing and entanglement in a cavity optomechanical system (COMS). In our model, a flying atom sequentially passes through and interacts with the COMS and a Ramsey pulse zone, and subsequently the atomic state is detected. In this way, the photon-phonon squeezing and entanglement can be generated. The dynamic evolution of the squeezing and entanglement in the presence of losses are examined by using the master equation method.

Keywords optomechanics      squeezing      entanglement     
Corresponding Author(s): Zhi-Ming Zhang   
Issue Date: 01 January 2019
 Cite this article:   
Jun-Hao Liu,Yu-Bao Zhang,Ya-Fei Yu, et al. Photon-phonon squeezing and entanglement in a cavity optomechanical system with a flying atom[J]. Front. Phys. , 2019, 14(1): 12601.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0861-4
https://academic.hep.com.cn/fop/EN/Y2019/V14/I1/12601
1 M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
https://doi.org/10.1103/RevModPhys.86.1391
2 T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172 (2008)
https://doi.org/10.1126/science.1156032
3 D. P. DiVincenzo, Quantum computation, Science 270(5234), 255 (1995)
https://doi.org/10.1126/science.270.5234.255
4 V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nat. Photonics 5(4), 222 (2011)
https://doi.org/10.1038/nphoton.2011.35
5 J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, Parametric normal-mode splitting in cavity optomechanics, Phys. Rev. Lett. 101(26), 263602 (2008)
https://doi.org/10.1103/PhysRevLett.101.263602
6 Z. R. Gong, H. Ian, Y. X. Liu, C. P. Sun, and F. Nori, Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system, Phys. Rev. A 80(6), 065801 (2009)
https://doi.org/10.1103/PhysRevA.80.065801
7 R. Ghobadi, A. R. Bahrampour, and C. Simon, Quantum optomechanics in the bistable regime, Phys. Rev. A 84(3), 033846 (2011)
https://doi.org/10.1103/PhysRevA.84.033846
8 A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. Chang, and O. Painter, Electromagnetically induced transparency and slow light with optomechanics, Nature 472(7341), 69 (2011)
https://doi.org/10.1038/nature09933
9 Y. C. Liu, B. B. Li, and Y. F. Xiao, Electromagnetically induced transparency in optical microcavities, Nanophotonics 6(5), 789 (2017)
https://doi.org/10.1515/nanoph-2016-0168
10 X. B. Yan, W. Z. Jia, Y. Li, J. H. Wu, X. L. Li, and H. W. Mu, Optomechanically induced amplification and perfect transparency in double-cavity optomechanics, Front. Phys. 10(3), 351 (2015)
https://doi.org/10.1007/s11467-015-0456-2
11 Y. C. Liu, Y. F. Xiao, X. Luan, Q. H. Gong, and C. W. Wong, Coupled cavities for motional ground-state cooling and strong optomechanical coupling, Phys. Rev. A 91(3), 033818 (2015)
https://doi.org/10.1103/PhysRevA.91.033818
12 X. Chen, Y. C. Liu, P. Peng, Y. Zhi, and Y. F. Xiao, Cooling of macroscopic mechanical resonators in hybrid atomoptomechanical systems, Phys. Rev. A 92(3), 033841 (2015)
https://doi.org/10.1103/PhysRevA.92.033841
13 K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)
https://doi.org/10.1007/s11467-011-0164-5
14 S. Bose, K. Jacobs, and P. L. Knight, Preparation of nonclassical states in cavities with a moving mirror, Phys. Rev. A 56(5), 4175 (1997)
https://doi.org/10.1103/PhysRevA.56.4175
15 T. S. Yin, X. Y. Lü, L. L. Zheng, M. Wang, S. Li, and Y. Wu, Nonlinear effects in modulated quantum optomechanics, Phys. Rev. A 95(5), 053861 (2017)
https://doi.org/10.1103/PhysRevA.95.053861
16 W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, Towards quantum superpositions of a mirror, Phys. Rev. Lett. 91(13), 130401 (2003)
https://doi.org/10.1103/PhysRevLett.91.130401
17 D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field, Phys. Rev. Lett. 98(3), 030405 (2007)
https://doi.org/10.1103/PhysRevLett.98.030405
18 T. P. Purdy, P. L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, Strong optomechanical squeezing of light, Phys. Rev. X 3(3), 031012 (2013)
https://doi.org/10.1103/PhysRevX.3.031012
19 R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
https://doi.org/10.1103/RevModPhys.81.865
20 S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Entangling macroscopic oscillators exploiting radiation pressure, Phys. Rev. Lett. 88(12), 120401 (2002)
https://doi.org/10.1103/PhysRevLett.88.120401
21 X. W. Xu, Y. J. Zhao, and Y. X. Liu, Entangled-state engineering of vibrational modes in a multimembrane optomechanical system,Phys. Rev. A 88(2), 022325 (2013)
https://doi.org/10.1103/PhysRevA.88.022325
22 M. Wang, X. Y. Lü, Y. D. Wang, J. Q. You, and Y. Wu, Macroscopic quantum entanglement in modulated optomechanics, Phys. Rev. A 94(5), 053807 (2016)
https://doi.org/10.1103/PhysRevA.94.053807
23 X. Y. Lü, G. L. Zhu, L. L. Zheng, and Y. Wu, Entanglement and quantum superposition induced by a single photon, Phys. Rev. A 97(3), 033807 (2018)
https://doi.org/10.1103/PhysRevA.97.033807
24 P. D. Drummond and Z. Ficek, Quantum squeezing, Springer Science & Business Media, 2013
25 Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys. 8(5), 475 (2013)
https://doi.org/10.1007/s11467-013-0384-y
26 A. A. Clerk, F. Marquardt, and K. Jacobs, Back-action evasion and squeezing of a mechanical resonator using a cavity detector, New J. Phys. 10(9), 095010 (2008)
https://doi.org/10.1088/1367-2630/10/9/095010
27 J. Q. Liao and C. K. Law, Parametric generation of quadrature squeezing of mirrors in cavity optomechanics, Phys. Rev. A 83(3), 033820 (2011)
https://doi.org/10.1103/PhysRevA.83.033820
28 X. Y. Lü, J. Q. Liao, L. Tian, and F. Nori, Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity, Phys. Rev. A 91(1), 013834 (2015)
https://doi.org/10.1103/PhysRevA.91.013834
29 R. Almog, S. Zaitsev, O. Shtempluck, and E. Buks, Noise squeezing in a nanomechanical duffing resonator, Phys. Rev. Lett. 98(7), 078103 (2007)
https://doi.org/10.1103/PhysRevLett.98.078103
30 W. C. Ge and M. S. Zubairy, Entanglement of two movable mirrors with a single photon superposition state,Phys. Scr. 90(7), 074015 (2015)
https://doi.org/10.1088/0031-8949/90/7/074015
31 W. C. Ge and M. S. Zubairy, Macroscopic optomechanical superposition via periodic qubit flipping, Phys. Rev. A 91(1), 013842 (2015)
https://doi.org/10.1103/PhysRevA.91.013842
32 J. Q. Liao, Q. Q. Wu, and F. Nori, Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system, Phys. Rev. A 89(1), 014302 (2014)
https://doi.org/10.1103/PhysRevA.89.014302
33 J. M. Raimond, M. Brune, and S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73(3), 565 (2001)
https://doi.org/10.1103/RevModPhys.73.565
34 D. F. V. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)
https://doi.org/10.1139/p07-060
35 W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)
https://doi.org/10.1103/PhysRevLett.80.2245
36 A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys. 4(5), 415 (2008)
37 A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nat. Phys. 5(7), 509 (2009)
38 J. Q. Liao, J. F. Huang, L. Tian, L. M. Kuang, and C. P. Sun, Generalized ultrastrong optomechanics, arXiv: 1802.09254
39 A. Xuereb, C. Genes, and A. Dantan, Strong coupling and long-range collective interactions in optomechanical arrays, Phys. Rev. Lett. 109(22), 223601 (2012)
https://doi.org/10.1103/PhysRevLett.109.223601
40 M. A. Lemonde, N. Didier, and A. A. Clerk, Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification, Nat. Commun. 7, 11338 (2016)
https://doi.org/10.1038/ncomms11338
41 P. B. Li, H. R. Li, and F. L. Li, Enhanced electromechanical coupling of a nanomechanical resonator to coupled superconducting cavities, Sci. Rep. 6(1), 19065 (2016)
https://doi.org/10.1038/srep19065
[1] Zhucheng Zhang, Jiancheng Pei, Yi-Ping Wang, Xiaoguang Wang. Measuring orbital angular momentum of vortex beams in optomechanics[J]. Front. Phys. , 2021, 16(3): 32503-.
[2] Long Tian, Shao-Ping Shi, Yu-Hang Tian, Ya-Jun Wang, Yao-Hui Zheng, Kun-Chi Peng. Resource reduction for simultaneous generation of two types of continuous variable nonclassical states[J]. Front. Phys. , 2021, 16(2): 21502-.
[3] Qian Dong, Ariadna J. Torres-Arenas, Guo-Hua Sun, Shi-Hai Dong. Tetrapartite entanglement features of W-Class state in uniform acceleration[J]. Front. Phys. , 2020, 15(1): 11602-.
[4] O. de los Santos-Sánchez. Probing intensity-field correlations of single-molecule surface-enhanced Raman-scattered light[J]. Front. Phys. , 2019, 14(6): 61601-.
[5] Xiao-Bo Yan, He-Lin Lu, Feng Gao, Feng Gao, Liu Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system[J]. Front. Phys. , 2019, 14(5): 52601-.
[6] Xiao-Tao Mo, Zheng-Yuan Xue. Single-step multipartite entangled states generation from coupled circuit cavities[J]. Front. Phys. , 2019, 14(3): 31602-.
[7] Miao-Miao Zhao, Zhuo Qian, Bang-Pin Hou, Yong Liu, Yong-Hong Zhao. Optomechanical properties of a degenerate nonperiodic cavity chain[J]. Front. Phys. , 2019, 14(2): 22601-.
[8] Qian Dong, Ariadna J. Torres-Arenas, Guo-Hua Sun, Wen-Chao Qiang, Shi-Hai Dong. Entanglement measures of a new type pseudo-pure state in accelerated frames[J]. Front. Phys. , 2019, 14(2): 21603-.
[9] Zhao Jin, S.-L. Su, Ai-Dong Zhu, Hong-Fu Wang, Shou Zhang. Engineering multipartite steady entanglement of distant atoms via dissipation[J]. Front. Phys. , 2018, 13(5): 134209-.
[10] Yu-Yu Jin, Sheng-Xian Qin, Hao Zu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Heralded amplification of single-photon entanglement with polarization feature[J]. Front. Phys. , 2018, 13(5): 130321-.
[11] Zhi-Rong Zhong, Xin Wang, Wei Qin. Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure[J]. Front. Phys. , 2018, 13(5): 130319-.
[12] Xiao-Yu Chen, Li-Zhen Jiang, Zhu-An Xu. Precise detection of multipartite entanglement in fourqubit Greenberger–Horne–Zeilinger diagonal states[J]. Front. Phys. , 2018, 13(5): 130317-.
[13] Hong Wang, Bao-Cang Ren, Ai Hua Wang, Ahmed Alsaedi, Tasawar Hayat, Fu-Guo Deng. General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics[J]. Front. Phys. , 2018, 13(5): 130315-.
[14] Ahmed Farouk, J. Batle, M. Elhoseny, Mosayeb Naseri, Muzaffar Lone, Alex Fedorov, Majid Alkhambashi, Syed Hassan Ahmed, M. Abdel-Aty. Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states[J]. Front. Phys. , 2018, 13(2): 130306-.
[15] Zhen-Zhen Zou, Xu-Tao Yu, Zai-Chen Zhang. Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network[J]. Front. Phys. , 2018, 13(2): 130202-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed