Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (3) : 32503    https://doi.org/10.1007/s11467-020-1030-0
RESEARCH ARTICLE
Measuring orbital angular momentum of vortex beams in optomechanics
Zhucheng Zhang1, Jiancheng Pei1, Yi-Ping Wang2, Xiaoguang Wang1,3()
1. Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou 310027, China
2. College of Science, Northwest A&F University, Yangling 712100, China
3. Graduate School of China Academy of Engineering Physics, Beijing 100193, China
 Download: PDF(1861 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Measuring the orbital angular momentum (OAM) of vortex beams, including the magnitude and the sign, has great application prospects due to its theoretically unbounded and orthogonal modes. Here, the sign-distinguishable OAM measurement in optomechanics is proposed, which is achieved by monitoring the shift of the transmission spectrum of the probe field in a double Laguerre–Gaussian (LG) rotational-cavity system. Compared with the traditional single LG rotational cavity, an asymmetric optomechanically induced transparency window can occur in our system. Meanwhile, the position of the resonance valley has a strong correlation with the magnitude and sign of OAM. This originally comes from the fact that the effective detuning of the cavity mode from the driving field can vary with the magnitude and sign of OAM, which causes the spectral shift to be directional for different signs of OAM. Our scheme solves the shortcoming of the inability to distinguish the sign of OAM in optomechanics, and works well for high-order vortex beams with topological charge value±45, which is a significant improvement for measuring OAM based on the cavity optomechanical system.

Keywords orbital angular momentum      optomechanically induced transparency      Laguerre–Gaussian rotational-cavity system      optomechanics     
Corresponding Author(s): Xiaoguang Wang   
Issue Date: 14 December 2020
 Cite this article:   
Zhucheng Zhang,Jiancheng Pei,Yi-Ping Wang, et al. Measuring orbital angular momentum of vortex beams in optomechanics[J]. Front. Phys. , 2021, 16(3): 32503.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1030-0
https://academic.hep.com.cn/fop/EN/Y2021/V16/I3/32503
1 J. F. Nye and M. V. Berry, Dislocations in wave trains, Proc. R. Soc. Lond. A 336(1605), 165 (1974)
https://doi.org/10.1098/rspa.1974.0012
2 L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes, Phys. Rev. A 45(11), 8185 (1992)
https://doi.org/10.1103/PhysRevA.45.8185
3 M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, Helical-wavefront laser beams produced with a spiral phaseplate, Opt. Commun. 112(5–6), 321 (1994)
https://doi.org/10.1016/0030-4018(94)90638-6
4 S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. T. Hooft, Half-integral spiral phase plates for optical wave-lengths, J. Opt. A 6(5), S288 (2004)
https://doi.org/10.1088/1464-4258/6/5/029
5 V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, Screw dislocations in light wavefronts, J. Mod. Opt. 39(5), 985 (1992)
https://doi.org/10.1080/09500349214551011
6 I. V. Basistiy, V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, Optics of light beams with screw dislocations, Opt. Commun. 103(5–6), 422 (1993)
https://doi.org/10.1016/0030-4018(93)90168-5
7 Z. Zhang, X. Qiao, B. Midya, K. Liu, J. Sun, T. Wu, W. Liu, R. Agarwal, J. M. Jornet, S. Longhi, N. M. Litchinitser, and L. Feng, Tunable topological charge vortex microlaser, Science 368(6492), 760 (2020)
https://doi.org/10.1126/science.aba8996
8 Z. Ji, W. Liu, S. Krylyuk, X. Fan, Z. Zhang, A. Pan, L. Feng, A. Davydov, and R. Agarwal, Photocurrent detection of the orbital angular momentum of light, Science 368(6492), 763 (2020)
https://doi.org/10.1126/science.aba9192
9 D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, Quantum storage of orbital angular momentum entanglement in an atomic ensemble, Phys. Rev. Lett. 114(5), 050502 (2015)
https://doi.org/10.1103/PhysRevLett.114.050502
10 J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing, Nat. Photonics 6(7), 488 (2012)
https://doi.org/10.1038/nphoton.2012.138
11 N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers, Science 340(6140), 1545 (2013)
https://doi.org/10.1126/science.1237861
12 M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, Dynamics of microparticles trapped in a perfect vortex beam, Opt. Lett. 38(22), 4919 (2013)
https://doi.org/10.1364/OL.38.004919
13 M. J. Padgett and R. Bowman, Tweezers with a twist, Nat. Photonics 5(6), 343 (2011)
https://doi.org/10.1038/nphoton.2011.81
14 M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, Single beam optical vortex tweezers with tunable orbital angular momentum, Appl. Phys. Lett. 104(23), 231110 (2014)
https://doi.org/10.1063/1.4882418
15 M. Harris, C. A. Hill, and J. M. Vaughan, Optical helices and spiral interference fringes, Opt. Commun. 106(4–6), 161 (1994)
https://doi.org/10.1016/0030-4018(94)90314-X
16 M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, Laser modes with helical wave fronts, Phys. Rev. A 49(4), 3119 (1994)
https://doi.org/10.1103/PhysRevA.49.3119
17 J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chavez-Cerda, Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum, Phys. Rev. Lett. 105(5), 053904 (2010)
https://doi.org/10.1103/PhysRevLett.105.053904
18 C. S. Guo, L. L. Lu, and H. T. Wang, Characterizing topological charge of optical vortices by using an annular aperture, Opt. Lett. 34(23), 3686 (2009)
https://doi.org/10.1364/OL.34.003686
19 P. Vaity, J. Banerji, and R. P. Singh, Measuring the topological charge of an optical vortex by using a tilted convex lens, Phys. Lett. A 377(15), 1154 (2013)
https://doi.org/10.1016/j.physleta.2013.02.030
20 S. Zheng and J. Wang, Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings, Sci. Rep. 7(1), 40781 (2017)
https://doi.org/10.1038/srep40781
21 S. E. Harris, Electromagnetically induced transparency, Phys. Today 50(7), 36 (1997)
https://doi.org/10.1063/1.881806
22 G. S. Agarwal and S. Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A81, 041803(R) (2010)
https://doi.org/10.1103/PhysRevA.81.041803
23 S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically induced transparency, Science 330(6010), 1520 (2010)
https://doi.org/10.1126/science.1195596
24 J. X. Peng, Z. Chen, Q. Z. Yuan, and X. L. Feng, Optomechanically induced transparency in a Laguerre–Gaussian rotational-cavity system and its application to the detection of orbital angular momentum of light fields, Phys. Rev. A 99(4), 043817 (2019)
https://doi.org/10.1103/PhysRevA.99.043817
25 M. Bhattacharya and P. Meystre, Using a laguerregaussian beam to trap and cool the rotational motion of a mirror, Phys. Rev. Lett. 99(15), 153603 (2007)
https://doi.org/10.1103/PhysRevLett.99.153603
26 M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
https://doi.org/10.1103/RevModPhys.86.1391
27 C. K. Law, Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation, Phys. Rev. A 51(3), 2537 (1995)
https://doi.org/10.1103/PhysRevA.51.2537
28 M. Bhattacharya, H. Uys, and P. Meystre, Optomechanical trapping and cooling of partially reflective mirrors, Phys. Rev. A 77(3), 033819 (2008)
https://doi.org/10.1103/PhysRevA.77.033819
29 Y. Xiao, Y. F. Yu, and Z. M. Zhang, Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble, Opt. Express 22(15), 17979 (2014)
https://doi.org/10.1364/OE.22.017979
30 Z. Zhang and X. Wang, Photon-assisted entanglement and squeezing generation and decoherence suppression via a quadratic optomechanical coupling, Opt. Express 28(3), 2732 (2020)
https://doi.org/10.1364/OE.381201
31 M. Bhattacharya, P. L. Giscard, and P. Meystre, Entanglement of a Laguerre–Gaussian cavity mode with a rotating mirror, Phys. Rev. A 77(1), 013827 (2008)
https://doi.org/10.1103/PhysRevA.77.013827
32 M. Bhattacharya, P. L. Giscard, and P. Meystre, Entangling the rovibrational modes of a macroscopic mirror using radiation pressure, Phys. Rev. A77, 030303(R) (2008)
https://doi.org/10.1103/PhysRevA.77.030303
33 Z. Chen, J. X. Peng, J. J. Fu, and X. L. Feng, Entanglement of two rotating mirrors coupled to a single Laguerre– Gaussian cavity mode, Opt. Express 27(21), 29479 (2019)
https://doi.org/10.1364/OE.27.029479
34 Y. M. Liu, C. H. Bai, D. Y. Wang, T. Wang, M. H. Zheng, H. F. Wang, A. D. Zhu, and S. Zhang, Ground-state cooling of rotating mirror in double-Laguerre–Gaussian-cavity with atomic ensemble, Opt. Express 26(5), 6143 (2018)
https://doi.org/10.1364/OE.26.006143
35 J. X. Peng, Z. Chen, Q. Z. Yuan, and X. L. Feng, Double optomechanically induced transparency in a Laguerre– Gaussian rovibrational cavity, Phys. Lett. A 384(7), 126153 (2020)
https://doi.org/10.1016/j.physleta.2019.126153
36 C. Sanavio, J. Z. Bernad, and A. Xuereb, Fisher information based estimation of optomechanical coupling strengths, Phys. Rev. A 102(1), 013508 (2020)
https://doi.org/10.1103/PhysRevA.102.013508
37 S. Huang and G. S. Agarwal, Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wavemixing cavity optomechanics, Phys. Rev. A 81(3), 033830 (2010)
https://doi.org/10.1103/PhysRevA.81.033830
38 C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer-Verlag, 2004
39 J. D. McCullen, P. Meystre, and E. M. Wright, Mirror confinement and control through radiation pressure, Opt. Lett. 9(6), 193 (1984)
https://doi.org/10.1364/OL.9.000193
40 A. Baas, J. P. Karr, H. Eleuch, and E. Giacobino, Optical bistability in semiconductor microcavities, Phys. Rev. A 69(2), 023809 (2004)
https://doi.org/10.1103/PhysRevA.69.023809
[1] Xiao-Bo Yan, He-Lin Lu, Feng Gao, Feng Gao, Liu Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system[J]. Front. Phys. , 2019, 14(5): 52601-.
[2] Miao-Miao Zhao, Zhuo Qian, Bang-Pin Hou, Yong Liu, Yong-Hong Zhao. Optomechanical properties of a degenerate nonperiodic cavity chain[J]. Front. Phys. , 2019, 14(2): 22601-.
[3] Jun-Hao Liu, Yu-Bao Zhang, Ya-Fei Yu, Zhi-Ming Zhang. Photon-phonon squeezing and entanglement in a cavity optomechanical system with a flying atom[J]. Front. Phys. , 2019, 14(1): 12601-.
[4] Xiao-Bo Yan, W. Z. Jia, Yong Li, Jin-Hui Wu, Xian-Li Li, Hai-Wei Mu. Optomechanically induced amplification and perfect transparency in double-cavity optomechanics[J]. Front. Phys. , 2015, 10(3): 104202-.
[5] Yi-Wen Hu, Yun-Feng Xiao, Yong-Chun Liu, Qihuang Gong. Optomechanical sensing with on-chip microcavities[J]. Front. Phys. , 2013, 8(5): 475-490.
[6] Ke-ye ZHANG (张可烨), Lu ZHOU (周鲁), Guang-jiong DONG (董光烔), Wei-ping ZHANG (张卫平). Cavity optomechanics with cold atomic gas[J]. Front. Phys. , 2011, 6(3): 237-250.
[7] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed