|
|
Optomechanically induced amplification and perfect transparency in double-cavity optomechanics |
Xiao-Bo Yan1,2( ),W. Z. Jia3,Yong Li4,Jin-Hui Wu2,*( ),Xian-Li Li1,Hai-Wei Mu1 |
1. College of Electronic Science, Northeast Petroleum University, Daqing 163318, China
2. College of Physics, Jilin University, Changchun 130012, China
3. Quantum Optoelectronics Laboratory, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
4. Beijing Computational Science Research Center, Beijing 100084, China |
|
|
Abstract We study optomechanically induced amplification and perfect transparency in a double-cavity optomechanical system. We find that if two control lasers with appropriate amplitudes and detunings are applied to drive the system, optomechanically induced amplification of a probe laser can occur. In addition, perfect optomechanically induced transparency, which is robust to mechanical dissipation, can be realized by the same type of driving. These results indicate important progress toward signal amplification, light storage, fast light, and slow light in quantum information processes.
|
Keywords
optomechanics
optomechanically induced amplification
optomechanically induced transparency
|
Corresponding Author(s):
Jin-Hui Wu
|
Issue Date: 11 June 2015
|
|
1 |
T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172 (2008)
https://doi.org/10.1126/science.1156032
|
2 |
F. Marquardt and S. M. Girvin, Optomechanics, Physics 2, 40 (2009)
https://doi.org/10.1103/Physics.2.40
|
3 |
P. Verlot, A. Tavernarakis, T. Briant, P. F. Cohadon, and A. Heidmann, Back-action amplification and quantum limits in optomechanical measurements, Phys. Rev. Lett. 104(13), 133602 (2010)
https://doi.org/10.1103/PhysRevLett.104.133602
|
4 |
S. Mahajan, T. Kumar, A. B. Bhattacherjee, and ManMohan, Ground-state cooling of a mechanical oscillator and detection of a weak force using a Bose–Einstein condensate, Phys. Rev. A 87(1), 013621 (2013)
https://doi.org/10.1103/PhysRevA.87.013621
|
5 |
Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. H. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys. 8(5), 475 (2013)
https://doi.org/10.1007/s11467-013-0384-y
|
6 |
S. Gigan, H. B?hm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. B?uerle, M. Aspelmeyer, and A. Zeilinger, Self-cooling of a micromirror by radiation pressure, Nature 444(7115), 67 (2006)
https://doi.org/10.1038/nature05273
|
7 |
D. Kleckner and D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator, Nature 444(7115), 75 (2006)
https://doi.org/10.1038/nature05231
|
8 |
G. S. Agarwal and Sumei Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A 81, 041803(R) (2010)
|
9 |
T. J. Kippenberg and K. J. Vahala, Cavity opto-mechanics, Opt. Express 15(25), 17172 (2007)
https://doi.org/10.1364/OE.15.017172
|
10 |
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Ultra-high-Q toroid microcavity on a chip, Nature 421(6926), 925 (2003)
https://doi.org/10.1038/nature01371
|
11 |
A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys. 4(5), 415 (2008)
https://doi.org/10.1038/nphys939
|
12 |
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Optomechanical crystals, Nature 462(7269), 78 (2009)
https://doi.org/10.1038/nature08524
|
13 |
Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities, Opt. Express 18(23), 23844 (2010)
https://doi.org/10.1364/OE.18.023844
|
14 |
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature 452(7183), 72 (2008)
https://doi.org/10.1038/nature06715
|
15 |
H. K. Cheung, and C. K. Law, Nonadiabatic optomechanical Hamiltonian of a moving dielectric membrane in a cavity, Phys. Rev. A 84(2), 023812 (2011)
https://doi.org/10.1103/PhysRevA.84.023812
|
16 |
F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Cavity optomechanics with a Bose-Einstein condensate, Science 322(5899), 235 (2008)
https://doi.org/10.1126/science.1163218
|
17 |
K. Zhang, P. Meystre, and W. Zhang, Role reversal in a Bose-Condensed optomechanical system, Phys. Rev. Lett. 108(24), 240405 (2012)
https://doi.org/10.1103/PhysRevLett.108.240405
|
18 |
K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)
https://doi.org/10.1007/s11467-011-0164-5
|
19 |
C. A. Regal, J. D. Teufel, and K. W. Lehnert, Measuring nanomechanical motion with a microwave cavity interferometer, Nat. Phys. 4(7), 555 (2008)
https://doi.org/10.1038/nphys974
|
20 |
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)
https://doi.org/10.1103/RevModPhys.85.623
|
21 |
I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)
https://doi.org/10.1103/PhysRevLett.99.093901
|
22 |
F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)
https://doi.org/10.1103/PhysRevLett.99.093902
|
23 |
Y. Li, L. A. Wu, and Z. D. Wang, Fast ground-state cooling of mechanical resonators with time-dependent optical cavities, Phys. Rev. A 83(4), 043804 (2011)
https://doi.org/10.1103/PhysRevA.83.043804
|
24 |
J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, Parametric normal-mode splitting in cavity optomechanics, Phys. Rev. Lett. 101(26), 263602 (2008)
https://doi.org/10.1103/PhysRevLett.101.263602
|
25 |
S. Gr?blacher, K. Hammerer, M. Vanner, and M. Aspelmeyer, Observation of strong coupling between a micromechanical resonator and an optical cavity field, Nature 460(7256), 724 (2009)
https://doi.org/10.1038/nature08171
|
26 |
J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, Circuit cavity electromechanics in the strong-coupling regime, Nature 471(7337), 204 (2011)
https://doi.org/10.1038/nature09898
|
27 |
A. Kronwald and F. Marquardt, Optomechanically induced transparency in the nonlinear quantum regime, Phys. Rev. Lett. 111(13), 133601 (2013)
https://doi.org/10.1103/PhysRevLett.111.133601
|
28 |
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically Induced Transparency, Science 330(6010), 1520 (2010)
https://doi.org/10.1126/science.1195596
|
29 |
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Electromagnetically induced transparency and slow light with optomechanics, Nature 472(7341), 69 (2011)
https://doi.org/10.1038/nature09933
|
30 |
M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature, Phys. Rev. A 88(1), 013804 (2013)
https://doi.org/10.1103/PhysRevA.88.013804
|
31 |
D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, Slowing and stopping light using an optomechanical crystal array, New J. Phys. 13(2), 023003 (2011)
https://doi.org/10.1088/1367-2630/13/2/023003
|
32 |
V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett. 107(13), 133601 (2011)
https://doi.org/10.1103/PhysRevLett.107.133601
|
33 |
T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett. 95(3), 033901 (2005)
https://doi.org/10.1103/PhysRevLett.95.033901
|
34 |
F. Marquardt, J. G. E. Harris, and S. M. Girvin, Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities, Phys. Rev. Lett. 96(10), 103901 (2006)
https://doi.org/10.1103/PhysRevLett.96.103901
|
35 |
K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. W. H?nsch, and T. Udem, A phonon laser, Nat. Phys. 5(9), 682 (2009)
https://doi.org/10.1038/nphys1367
|
36 |
F. Massel, T. T. Heikkil?, J. M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanp??, Microwave amplification with nanomechanical resonators, Nature 480(7377), 351 (2011)
https://doi.org/10.1038/nature10628
|
37 |
A. Nunnenkamp, V. Sudhir, A. K. Feofanov, A. Roulet, and T. J. Kippenberg, Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics, arXiv: 1312.5867 (2013)
|
38 |
A. Metelmann and A. A. Clerk, Quantum-limited amplification via reservoir engineering, Phys. Rev. Lett. 112(13), 133904 (2014)
https://doi.org/10.1103/PhysRevLett.112.133904
|
39 |
X. B. Yan, C. L. Cui, K. H. Gu, X. D. Tian, C. B. Fu, and J. H. Wu, Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system, Opt. Express 22(5), 4886 (2014)
https://doi.org/10.1364/OE.22.004886
|
40 |
M. Paternostro, D. Vitali, S. Gigan, M. S. Kim, C. Brukner, J. Eisert, and M. Aspelmeyer, Creating and probing multipartite macroscopic entanglement with light, Phys. Rev. Lett. 99(25), 250401 (2007)
https://doi.org/10.1103/PhysRevLett.99.250401
|
41 |
M. Bhattacharya and P. Meystre, Trapping and cooling a mirror to its quantum mechanical ground state, Phys. Rev. Lett. 99(7), 073601 (2007)
https://doi.org/10.1103/PhysRevLett.99.073601
|
42 |
Y. D. Wang, and A. A. Clerk, Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett. 108(15), 153603 (2012)
https://doi.org/10.1103/PhysRevLett.108.153603
|
43 |
R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, Bidirectional and efficient conversion between microwave and optical light, Nat. Phys. 10(4), 321 (2014)
https://doi.org/10.1038/nphys2911
|
44 |
J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, Coherent optical wavelength conversion via cavity optomechanics, Nat. Commun. 3, 1196 (2012)
https://doi.org/10.1038/ncomms2201
|
45 |
G. S. Agarwal and S. Huang, Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes, New J. Phys. 16(3), 033023 (2014)
https://doi.org/10.1088/1367-2630/16/3/033023
|
46 |
D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer-Verlag, 1994
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|