Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (2) : 21603    https://doi.org/10.1007/s11467-018-0876-x
RESEARCH ARTICLE
Entanglement measures of a new type pseudo-pure state in accelerated frames
Qian Dong1(), Ariadna J. Torres-Arenas1(), Guo-Hua Sun2(), Wen-Chao Qiang3(), Shi-Hai Dong1()
1. Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, CDMX 07700, Mexico
2. Catedrática CONACyT, Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, Mexico D. F. 07700, Mexico
3. Faculty of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
 Download: PDF(3909 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work we analyze the characteristics of quantum entanglement of the Dirac field in noninertial reference frames in the context of a new type pseudo-pure state, which is composed of the Bell states. This will help us to understand the relationship between the relativity and quantum information theory. Some states will be changed from entangled states into separable ones around the critical value F = 1/4, but there is no such a critical value for the variable y related to acceleration a. We find that the negativity NABI (ρTAABI) increases with F but decreases with the variable y, while the variation of the negativity NBIBII(ρTAABI) is opposite to that of the negativity NABI (ρTAABI). We also study the von Neumann entropies S(ρABI) and S(ρBIBII). We find that the S(ρABI) increases with variable y but S(ρBIBII) is independent of it. However, both S(ρABI) and S(ρBIBII) first decreases with F and then increases with it. The concurrences C(ρABI) and C(ρBIBII) are also discussed. We find that the former decreases with y while the latter increases with y but both of them first increase with F and then decrease with it.

Keywords negativity      pseudo-pure state      noninertial frame      entanglement      von Neumann entropy      concurrence     
Corresponding Author(s): Qian Dong,Ariadna J. Torres-Arenas,Guo-Hua Sun,Wen-Chao Qiang,Shi-Hai Dong   
Issue Date: 29 December 2018
 Cite this article:   
Qian Dong,Ariadna J. Torres-Arenas,Guo-Hua Sun, et al. Entanglement measures of a new type pseudo-pure state in accelerated frames[J]. Front. Phys. , 2019, 14(2): 21603.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0876-x
https://academic.hep.com.cn/fop/EN/Y2019/V14/I2/21603
1 P. M. Alsing and G. J. Milburn, Teleportation with a uniformly accelerated partner, Phys. Rev. Lett. 91(18), 180404 (2003)
https://doi.org/10.1103/PhysRevLett.91.180404
2 A. Peres and D. R. Terno, Quantum information and relativity theory, Rev. Mod. Phys. 76(1), 93 (2004) (and references therein)
https://doi.org/10.1103/RevModPhys.76.93
3 I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95(12), 120404 (2005)
https://doi.org/10.1103/PhysRevLett.95.120404
4 L. Lamata, M. A. Martin-Delgado, and E. Solano, Relativity and Lorentz invariance of entanglement distillability, Phys. Rev. Lett. 97(25), 250502 (2006)
https://doi.org/10.1103/PhysRevLett.97.250502
5 P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Entanglement of Dirac fields in noninertial frames, Phys. Rev. A 74(3), 032326 (2006)
https://doi.org/10.1103/PhysRevA.74.032326
6 K. Bradler, Eavesdropping of quantum communication from a noninertial frame, Phys. Rev. A 75(2), 022311 (2007)
https://doi.org/10.1103/PhysRevA.75.022311
7 Y. C. Ou and H. Fan, Monogamy inequality in terms of negativity for three-qubit states, Phys. Rev. A 75(6), 062308 (2007)
https://doi.org/10.1103/PhysRevA.75.062308
8 D. E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan, and I. Fuentes, Unruh effect in quantum information beyond the single-mode approximation, Phys. Rev. A 82(4), 042332 (2008)
https://doi.org/10.1103/PhysRevA.82.042332
9 J. Wang and J. Jing, Multipartite entanglement of fermionic systems in noninertial frames, Phys. Rev. A 83(2), 022314 (2011)
https://doi.org/10.1103/PhysRevA.83.022314
10 M.-R. Hwang, D. Park, and E. Jung, Tripartite entanglement in noninertial frame, Phys. Rev. A 83, 012111 (2001)
https://doi.org/10.1103/PhysRevA.83.012111
11 Y. Yao, X. Xiao, L. Ge, X. G. Wang, and C. P. Sun, Quantum Fisher information in noninertial frames, Phys. Rev. A 89(4), 042336 (2014)
https://doi.org/10.1103/PhysRevA.89.042336
12 S. Khan, Tripartite entanglement of fermionic system in accelerated frames, Ann. Phys. 348, 270 (2014)
https://doi.org/10.1016/j.aop.2014.05.022
13 S. Khan, N. A. Khan, and M. K. Khan, Non-maximal tripartite entanglement degradation of Dirac and scalar fields in non-inertial frames, Commum. Theor. Phys. 61(3), 281 (2014)
https://doi.org/10.1088/0253-6102/61/3/02
14 D. E. Bruschi, A. Dragan, I. Fuentes, and J. Louko, Particle and antiparticle bosonic entanglement in noninertial frames, Phys. Rev. D 86(2), 025026 (2012)
https://doi.org/10.1103/PhysRevD.86.025026
15 E. Martín-Martínez and I. Fuentes, Redistribution of particle and antiparticle entanglement in noninertial frames, Phys. Rev. A 83(5), 052306 (2011)
https://doi.org/10.1103/PhysRevA.83.052306
16 I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95(12), 120404 (2005)
https://doi.org/10.1103/PhysRevLett.95.120404
17 X. Xiao, Y. M. Xie, Y. Yao, Y. L. Li, and J. Wang, Retrieving the lost fermionic entanglement by partial measurement in noninertial frames, Ann. Phys. 390, 83 (2018)
https://doi.org/10.1016/j.aop.2018.01.006
18 W. C. Qiang, G. H. Sun, O. Camacho-Nieto, and S. H. Dong, Multipartite entanglement of fermionic systems in noninertial frames revisited, arXiv: 1711.04230 (2017)
19 S. Moradi, Distillability of entanglement in accelerated frames, Phys. Rev. A 79(6), 064301 (2009)
https://doi.org/10.1103/PhysRevA.79.064301
20 H. Mehri-Dehnavi, B. Mirza, H. Mohammadzadeh, and R. Rahimi, Pseudo-entanglement evaluated in noninertial frames, Ann. Phys. 326(5), 1320 (2011)
https://doi.org/10.1016/j.aop.2011.02.001
21 R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A 40(8), 4277 (1989)
https://doi.org/10.1103/PhysRevA.40.4277
22 W. C. Qiang, Q. Dong, G. H. Sun and S. H. Dong (submitted)
23 R. A. Horn and C. R. Johnson, Matrix Analysis, New York: Cambridge University Press, 1985, pp 205–415, 441
24 W. C. Qiang, G. H. Sun, Q. Dong, and S. H. Dong, Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames, Phys. Rev. A 98(2), 022320 (2018)
https://doi.org/10.1103/PhysRevA.98.022320
25 S. A. Najafizade, H. Hassanabadi, and S. Zarrinkamar, Nonrelativistic Shannon information entropy for Kratzer potential, Chin. Phys. B 25(4), 040301 (2016)
https://doi.org/10.1088/1674-1056/25/4/040301
26 S. A. Najafizade, H. Hassanabadi, and S. Zarrinkamar, Nonrelativistic Shannon information entropy for Killingbeck potential, Can. J. Phys. 94(10), 1085 (2016)
https://doi.org/10.1139/cjp-2016-0113
27 Y. Q. Li and G. Q. Zhu, Concurrence vectors for entanglement of high-dimensional systems, Front. Phys. China 3(3), 250 (2008)
https://doi.org/10.1007/s11467-008-0022-2
[1] Long Tian, Shao-Ping Shi, Yu-Hang Tian, Ya-Jun Wang, Yao-Hui Zheng, Kun-Chi Peng. Resource reduction for simultaneous generation of two types of continuous variable nonclassical states[J]. Front. Phys. , 2021, 16(2): 21502-.
[2] Qian Dong, Ariadna J. Torres-Arenas, Guo-Hua Sun, Shi-Hai Dong. Tetrapartite entanglement features of W-Class state in uniform acceleration[J]. Front. Phys. , 2020, 15(1): 11602-.
[3] Ying-Yue Yang, Wen-Yang Sun, Wei-Nan Shi, Fei Ming, Dong Wang, Liu Ye. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions[J]. Front. Phys. , 2019, 14(3): 31601-.
[4] Xiao-Tao Mo, Zheng-Yuan Xue. Single-step multipartite entangled states generation from coupled circuit cavities[J]. Front. Phys. , 2019, 14(3): 31602-.
[5] Jun-Hao Liu, Yu-Bao Zhang, Ya-Fei Yu, Zhi-Ming Zhang. Photon-phonon squeezing and entanglement in a cavity optomechanical system with a flying atom[J]. Front. Phys. , 2019, 14(1): 12601-.
[6] Zhao Jin, S.-L. Su, Ai-Dong Zhu, Hong-Fu Wang, Shou Zhang. Engineering multipartite steady entanglement of distant atoms via dissipation[J]. Front. Phys. , 2018, 13(5): 134209-.
[7] Yu-Yu Jin, Sheng-Xian Qin, Hao Zu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Heralded amplification of single-photon entanglement with polarization feature[J]. Front. Phys. , 2018, 13(5): 130321-.
[8] Zhi-Rong Zhong, Xin Wang, Wei Qin. Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure[J]. Front. Phys. , 2018, 13(5): 130319-.
[9] Xiao-Yu Chen, Li-Zhen Jiang, Zhu-An Xu. Precise detection of multipartite entanglement in fourqubit Greenberger–Horne–Zeilinger diagonal states[J]. Front. Phys. , 2018, 13(5): 130317-.
[10] Hong Wang, Bao-Cang Ren, Ai Hua Wang, Ahmed Alsaedi, Tasawar Hayat, Fu-Guo Deng. General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics[J]. Front. Phys. , 2018, 13(5): 130315-.
[11] Ahmed Farouk, J. Batle, M. Elhoseny, Mosayeb Naseri, Muzaffar Lone, Alex Fedorov, Majid Alkhambashi, Syed Hassan Ahmed, M. Abdel-Aty. Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states[J]. Front. Phys. , 2018, 13(2): 130306-.
[12] Zhen-Zhen Zou, Xu-Tao Yu, Zai-Chen Zhang. Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network[J]. Front. Phys. , 2018, 13(2): 130202-.
[13] Cun-Jin Liu, Wei Ye, Wei-Dong Zhou, Hao-Liang Zhang, Jie-Hui Huang, Li-Yun Hu. Entanglement of coherent superposition of photon-subtraction squeezed vacuum[J]. Front. Phys. , 2017, 12(5): 120307-.
[14] Xiang Yan, Ya-Fei Yu, Zhi-Ming Zhang. Entanglement concentration for a non-maximally entangled four-photon cluster state[J]. Front. Phys. , 2014, 9(5): 640-645.
[15] Ming Li, Ming-Jing Zhao, Shao-Ming Fei, Zhi-Xi Wang. Experimental detection of quantum entanglement[J]. Front. Phys. , 2013, 8(4): 357-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed