|
|
Heralded amplification of single-photon entanglement with polarization feature |
Yu-Yu Jin1, Sheng-Xian Qin1, Hao Zu1, Lan Zhou1,2,3( ), Wei Zhong3,4, Yu-Bo Sheng3,4 |
1. School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China 2. New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210003, China 3. Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003, China 4. Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract Heralded noiseless amplification is beneficial in overcoming transmission photon loss in a noisy quantum channel. We propose a single-photon-assisted heralded noiseless amplification protocol of the singlephoton entanglement (SPE), where the single-photon qubit has an arbitrary unknown polarization feature. We focus on both the complete and partial photon loss during the transmission process. After the amplification, the parties can recover the pure less-entangled SPE into a maximally entangled SPE and increase its fidelity. Moreover, the polarization feature of the single-photon qubit will be well preserved and not be leaked. Our protocol can be realized under our current experimental condition. Based on the features above, our protocol may be useful in the quantum secure communication schemes that encode information in the polarization degree of freedom of photons.
|
Keywords
quantum communication
single-photon entanglement
quantum state amplification
polarization feature
|
Corresponding Author(s):
Lan Zhou
|
Issue Date: 10 September 2018
|
|
1 |
C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
|
2 |
M. Y. Wang and F. L. Yan, Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities, Quantum Inform. Process. 15(8), 3383 (2016)
https://doi.org/10.1007/s11128-016-1341-9
|
3 |
T. C. Li and Z. Q. Yin, Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator, Sci. Bull. 61(2), 163 (2016)
https://doi.org/10.1007/s11434-015-0990-x
|
4 |
M. D. G. Ramírez, B. J. Falaye, G. H. Sun, M. Cruz-Irisson, and S. H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)
https://doi.org/10.1007/s11467-017-0684-8
|
5 |
P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)
https://doi.org/10.1007/s11467-016-0553-x
|
6 |
G. L. Long and X. S. Liu, Theoretically efficient highcapacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
https://doi.org/10.1103/PhysRevA.65.032302
|
7 |
F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
https://doi.org/10.1103/PhysRevA.68.042317
|
8 |
C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Quantum secure direct communication with highdimension quantum superdense coding, Phys. Rev. A 71(4), 044305 (2005)
https://doi.org/10.1103/PhysRevA.71.044305
|
9 |
F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states, Sci. China Phys. Mech. Astron. 60(12), 120313 (2017)
https://doi.org/10.1007/s11433-017-9100-9
|
10 |
A. G. D. H. Guerra, F. F. S. Rios, and R. V. Ramos, Quantum secure direct communication of digital and analog signals using continuum coherent states, Quantum Inform. Process. 15(11), 4747 (2016)
https://doi.org/10.1007/s11128-016-1410-0
|
11 |
W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)
https://doi.org/10.1103/PhysRevLett.118.220501
|
12 |
F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, Experimental long-distance quantum secret direct communication, Sci. Bull. 62(22), 1519 (2017)
https://doi.org/10.1016/j.scib.2017.10.023
|
13 |
A. K. Ekert, Quantum cryptography based on Bells theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
|
14 |
D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons, Sci. Bull. 60(12), 1128 (2015)
https://doi.org/10.1007/s11434-015-0801-4
|
15 |
B. K. Park, M. S. Lee, M. K. Woo, Y. S. Kim, S. W. Han, and S. Moon, QKD system with fast active optical path length compensation, Sci. China Phys. Mech. Astron. 60(6), 060311 (2017)
https://doi.org/10.1007/s11433-017-9026-8
|
16 |
Y. B. Sheng and L. Zhou, Distributed secure quantum machine learning, Sci. Bull. 62(14), 1025 (2017)
https://doi.org/10.1016/j.scib.2017.06.007
|
17 |
W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, Improved multiparty quantum key agreement in travelling mode, Sci. China Phys. Mech. Astron. 59(12), 120311 (2016)
https://doi.org/10.1007/s11433-016-0322-3
|
18 |
Q. Yu, Y. B. Zhang, J. Li, H. Y. Wang, X. H. Peng, and J. F. Du, Generic preparation and entanglement detection of equal superposition states, Sci. China Phys. Mech. Astron. 60(7), 070313 (2017)
https://doi.org/10.1007/s11433-017-9040-3
|
19 |
G. A. Yan, H. X. Qiao, H. Lu, and A. X. Chen, Quantum information-holding single-photon router based on spontaneous emission, Sci. China Phys. Mech. Astron. 60(9), 090311 (2017)
https://doi.org/10.1007/s11433-017-9059-3
|
20 |
C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)
https://doi.org/10.1007/s11467-017-0694-6
|
21 |
M. Y. Wang, F. L. Yan, and T. Gao, Generation of fourphoton polarization entangled decoherence-free states with cross-Kerr nonlinearity, Sci. Rep. 6(1), 38233 (2016)
https://doi.org/10.1038/srep38233
|
22 |
M. Y. Wang, F. L. Yan, and J. Z. Xu, Perfect entanglement concentration of an arbitrary four-photon polarization entangled state via quantum nondemolition detectors, J. Phys. B-At. Mol. Opt. 49(15), 155502 (2016)
https://doi.org/10.1088/0953-4075/49/15/155502
|
23 |
A. Farouk, J. Batle, M. Elhoseny, M. Naseri, M. Lone, A. Fedorov, M. Alkhambashi, S. H. Ahmed, and M. Abdel-Aty, Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states, Front. Phys. 13(2), 130306 (2018)
https://doi.org/10.1007/s11467-017-0717-3
|
24 |
J. Batle, A. Farouk, O. Tarawneh, and S. Abdalla, Multipartite quantum correlations among atoms in QED cavities, Front. Phys. 13(1), 130305 (2018)
https://doi.org/10.1007/s11467-017-0711-9
|
25 |
D. Salart, O. Landry, N. Sangouard, N. Gisin, H. Herrmann, B. Sanguinetti, C. Simon, W. Sohler, R. T. Thew, A. Thomas, and H. Zbinden, Purification of singlephoton entanglement, Phys. Rev. Lett. 104(18), 180504 (2010)
https://doi.org/10.1103/PhysRevLett.104.180504
|
26 |
D. Gottesman, T. Jennewein, and S. Croke, Longerbaseline telescopes using quantum repeaters, Phys. Rev. Lett. 109(7), 070503 (2012)
https://doi.org/10.1103/PhysRevLett.109.070503
|
27 |
T. Guerreiro, F. Monteiro, A. Martin, J. B. Brask, T. Vértesi, B. Korzh, M. Caloz, F. Bussières, V. B. Verma, A. E. Lita, R. P. Mirin, S. W. Nam, F. Marsilli, M. D. Shaw, N. Gisin, N. Brunner, H. Zbinden, and R. T. Thew, Demonstration of Einstein–Podolsky–Rosen steering using single-photon path entanglement and displacementbased detection, Phys. Rev. Lett. 117(7), 070404 (2016)
https://doi.org/10.1103/PhysRevLett.117.070404
|
28 |
V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys. 81(3), 1301 (2009)
https://doi.org/10.1103/RevModPhys.81.1301
|
29 |
T. C. Ralph and A. P. Lund, Nondeterministic noiseless linear amplification of quantum systems, in: Proceedings of the 9th International Conference on Quantum Communication Measurement and Computing, A. lvovsky (Ed.), AIP, 2009, pp 155–160
https://doi.org/10.1063/1.3131295
|
30 |
N. Gisin, S. Pironio, and N. Sangouard, Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier, Phys. Rev. Lett. 105(7), 070501 (2010)
https://doi.org/10.1103/PhysRevLett.105.070501
|
31 |
G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, Heralded noiseless linear amplification and distillation of entanglement, Nat. Photonics 4(5), 316 (2010)
https://doi.org/10.1038/nphoton.2010.35
|
32 |
M. Curty and T. Moroder, Heralded-qubit amplifiers for practical device-independent quantum key distribution, Phys. Rev. A 84, 010304(R) (2011)
|
33 |
D. Pitkanen, X. Ma, R. Wickert, P. van Loock, and N. Lütkenhaus, Efficient heralding of photonic qubits with applications to device-independent quantum key distribution, Phys. Rev. A 84(2), 022325 (2011)
https://doi.org/10.1103/PhysRevA.84.022325
|
34 |
C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, Heralded photon amplification for quantum communication, Phys. Rev. A 86(2), 023815 (2012)
https://doi.org/10.1103/PhysRevA.86.023815
|
35 |
S. L. Zhang, S. Yang, X. B. Zou, B. S. Shi, and G. C. Guo, Protecting single-photon entangled state from photon loss with noiseless linear amplification, Phys. Rev. A 86(3), 034302 (2012)
https://doi.org/10.1103/PhysRevA.86.034302
|
36 |
T. J. Wang, C. Cao, and C. Wang, Linear-optical implementation of hyperdistillation from photon loss, Phys. Rev. A 89(5), 052303 (2014)
https://doi.org/10.1103/PhysRevA.89.052303
|
37 |
T. J. Wang and C. Wang, High-efficient entanglement distillation from photon loss and decoherence, Opt. Express 23(24), 31550 (2015)
https://doi.org/10.1364/OE.23.031550
|
38 |
N. A. McMahon, A. P. Lund, and T. C. Ralph, Optimal architecture for a nondeterministic noiseless linear amplifier, Phys. Rev. A 89(2), 023846 (2014)
https://doi.org/10.1103/PhysRevA.89.023846
|
39 |
S. L. Zhang, Y. L. Dong, X. B. Zou, B. S. Shi, and G. C. Guo, Continuous-variable-entanglement distillation with photon addition, Phys. Rev. A 88(3), 032324 (2013)
https://doi.org/10.1103/PhysRevA.88.032324
|
40 |
J. Minár̆, H. de Riedmatten, and N. Sangouard, Quantum repeaters based on heralded qubit amplifiers, Phys. Rev. A 85(3), 032313 (2012)
https://doi.org/10.1103/PhysRevA.85.032313
|
41 |
L. Zhou and Y. B. Sheng, Recyclable amplification protocol for the single-photon entangled state, Laser Phys. Lett. 12(4), 045203 (2015)
https://doi.org/10.1088/1612-2011/12/4/045203
|
42 |
F. Monteiro, E. Verbanis, V. C. Vivoli, A. Martin, N. Gisin, H. Zbinden, and R. T. Thew, Heralded amplification of path entangled quantum states, Quantum Sci. Technol. 2(2), 024008 (2017)
https://doi.org/10.1088/2058-9565/aa70ad
|
43 |
E. Meyer-Scott, M. Bula, K. Bartkiewicz, A. Črnoch, J. Soubusta, T. Jennewein, and K. Lemr, Entanglementbased linear-optical qubit amplifier, Phys. Rev. A 88(1), 012327 (2013)
https://doi.org/10.1103/PhysRevA.88.012327
|
44 |
Y. Ou-Yang, Z. F. Feng, L. Zhou, and Y. B. Sheng, Protecting single-photon entanglement with imperfect single-photon source, Quantum Inform. Process. 14(2), 635 (2015)
https://doi.org/10.1007/s11128-014-0886-8
|
45 |
Y. Ou-Yang, Z. F. Feng, L. Zhou, and Y. B. Sheng, Linear-optical qubit amplification with spontaneous parametric down-conversion source, Laser Phys. 26(1), 015204 (2016)
https://doi.org/10.1088/1054-660X/26/1/015204
|
46 |
L. Zhou, Y. Ou-Yang, L. Wang, and Y. B. Sheng, Protecting single-photon entanglement with practical entanglement source, Quantum Inform. Process. 16(6), 151 (2017)
https://doi.org/10.1007/s11128-017-1601-3
|
47 |
Z. F. Feng, Y. Ou-Yang, L. Zhou, and Y. B. Sheng, Distillation of arbitrary single-photon entanglement assisted with polarized Bell states, Quantum Inform. Process. 14(10), 3693 (2015)
https://doi.org/10.1007/s11128-015-1075-0
|
48 |
Z. F. Feng, Y. Ou-Yang, L. Zhou, and Y. B. Sheng, Entanglement assisted single-photon W state amplification, Opt. Commun. 340, 80 (2015)
https://doi.org/10.1016/j.optcom.2014.11.032
|
49 |
N. Bruno, V. Pini, A. Martin, V. B. Verma, S. W. Nam, R. Mirin, A. Lita, F. Marsili, B. Korzh, F. Bussieres, N. Sangouard, H. Zbinden, N. Gisin, and R. Thew, Heralded amplification of photonic qubits, Opt. Express 24(1), 125 (2016)
https://doi.org/10.1364/OE.24.000125
|
50 |
S. Kocsis, G. Y. Xiang, T. C. Ralph, and G. J. Pryde, Heralded noiseless amplification of a photon polarization qubit, Nat. Phys. 9(1), 23 (2013)
|
51 |
F. G. Deng, Optimal nonlocal multipartite entanglement concentration based on projection measurements, Phys. Rev. A 85(2), 022311 (2012)
https://doi.org/10.1103/PhysRevA.85.022311
|
52 |
Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)
https://doi.org/10.1103/PhysRevA.85.012307
|
53 |
Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient twostep entanglement concentration for arbitraryWstates, Phys. Rev. A 85(4), 042302 (2012)
https://doi.org/10.1103/PhysRevA.85.042302
|
54 |
C. H. Bennett and G. Brassard, Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 175, New York: IEEE, 1984
|
55 |
L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, Quantum key distribution without detector vulnerabilities using optically seeded lasers, Nat. Photonics 4(5), 312 (2016)
https://doi.org/10.1038/nphoton.2016.50
|
56 |
H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics, Quantum Inform. Process. 16(10), 237 (2017)
https://doi.org/10.1007/s11128-017-1688-6
|
57 |
B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics, Ann. Phys. 385, 86 (2017)
https://doi.org/10.1016/j.aop.2017.07.013
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|