Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2015, Vol. 10 Issue (6) : 100307    https://doi.org/10.1007/s11467-015-0485-x
REVIEW ARTICLE
How far can one send a photon?
Nicolas Gisin()
Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
 Download: PDF(234 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The answer to the question How far can one send a photon? depends heavily on what one means by a photon and on what one intends to do with that photon. For direct quantum communication, the limit is approximately 500 km. For terrestrial quantum communication, near-future technologies based on quantum teleportation and quantum memories will soon enable quantum repeaters that will turn the development of a world-wide-quantum-web (WWQW) into a highly non-trivial engineering problem. For Device-Independent Quantum Information Processing, near-future qubit amplifiers (i.e., probabilistic heralded amplification of the probability amplitude of the presence of photonic qubits) will soon allow demonstrations over a few tens of kilometers.

Keywords quantum communication     
Corresponding Author(s): Nicolas Gisin   
Online First Date: 09 November 2015    Issue Date: 28 December 2015
 Cite this article:   
Nicolas Gisin. How far can one send a photon?[J]. Front. Phys. , 2015, 10(6): 100307.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0485-x
https://academic.hep.com.cn/fop/EN/Y2015/V10/I6/100307
1 F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, Detecting single infrared photons with 93% system efficiency, Nat. Photonics 7(3), 210 (2013)
https://doi.org/10.1038/nphoton.2013.13
2 B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, Provably secure and practical quantum key distribution over 307 km of optical fibre, Nat. Photonics 9(3), 163 (2015)
https://doi.org/10.1038/nphoton.2014.327
3 N. Gisin and R. Thew, Quantum communication, Nat. Photonics 1(3), 165 (2007)
https://doi.org/10.1038/nphoton.2007.22
4 H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum repeaters: The role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81(26), 5932 (1998)
https://doi.org/10.1103/PhysRevLett.81.5932
5 C. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein?Podolsky?Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
6 S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in Quantum Teleportation, Nature Photonics (2015); arXiv: 1505.07831
7 J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Pulsed energy-time entangled twin-photon source for quantum communication, Phys. Rev. Lett. 82(12), 2594 (1999)
https://doi.org/10.1103/PhysRevLett.82.2594
8 W. Tittel and G. Weihs, Photonic entanglement for fundamental tests and quantum communication, Quantum Inf. Comput. 1, 3 (2001)
9 N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, Long-distance entanglement distribution with single-photon sources, Phys. Rev. A 76(5), 050301 (2007)
https://doi.org/10.1103/PhysRevA.76.050301
10 A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, A quantum memory with telecom-wavelength conversion, Nat. Phys. 6(11), 894 (2010)
https://doi.org/10.1038/nphys1773
11 M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Optically addressable nuclear spins in a solid with a six-hour coherence time, Nature 517(7533), 177 (2015)
https://doi.org/10.1038/nature14025
12 P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, Coherent spin control at the quantum level in an ensemble-based optical memory, Phys. Rev. Lett. 114(23), 230502 (2015)
https://doi.org/10.1103/PhysRevLett.114.230502
13 Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy, Phys. Rev. Lett. 111(24), 240503 (2013)
https://doi.org/10.1103/PhysRevLett.111.240503
14 E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, Broadband waveguide quantum memory for entangled photons, Nature 469, 512 (2011)
https://doi.org/10.1038/nature09719
15 I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, Mapping multiple photonic qubits into and out of one solid-state atomic ensemble, Nat. Commun. 1(1), 1 (2010)
https://doi.org/10.1038/ncomms1010
16 H. Krovi, S. Guha, and Z. Dutton, Practical quantum repeaters with parametric down-conversion sources, arXiv: 1505.03470 (2015)
17 Ch. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, Quantum repeaters with photon pair sources and multimode memories, Phys. Rev. Lett. 98(19), 190503 (2007)
https://doi.org/10.1103/PhysRevLett.98.190503
18 T. C. Ralph and A. P. Lund, Nondeterministic noiseless linear amplification of quantum systems, Quantum Communication Measurement and Computing Proceedings of 9th International Conference, Ed. A. Lvovsky, 155–160 (2009)
19 V. Scarani, The device-independent outlook on quantum physics (lecture notes on the power of Bell's theorem), Acta Phys. Slovaca 62, 347 (2012)
20 N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86(2), 419 (2014)
https://doi.org/10.1103/RevModPhys.86.419
21 N. Gisin, Quantum Chance, Nonlocality, Teleportation and Other Quantum Marvels, Springer 2014
22 A. Acín, L. Masanes, and N. Gisin, Equivalence between two-qubit entanglement and secure key distribution, Phys. Rev. Lett. 91(16), 167901 (2003)
https://doi.org/10.1103/PhysRevLett.91.167901
23 N. Gisin, Statistics of polarization dependent losses, Opt. Commun. 114(5-6), 399 (1995)
https://doi.org/10.1016/0030-4018(95)00687-4
24 C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, Heralded photon amplification for quantum communication, Phys. Rev. A 86(2), 023815 (2012)
https://doi.org/10.1103/PhysRevA.86.023815
25 N. Bruno, V. Pini, A. Martin, and R. T. Thew, A complete characterization of the heralded noiseless amplification of photons, New J. Phys. 15(9), 093002 (2013)
https://doi.org/10.1088/1367-2630/15/9/093002
26 N. Gisin, S. Pironio, and N. Sangouard, Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier, Phys. Rev. Lett. 105(7), 070501 (2010)
https://doi.org/10.1103/PhysRevLett.105.070501
27 M. Curty and T. Moroder, Heralded-qubit amplifiers for practical device-independent quantum key distribution, Phys. Rev. A 84(1), 010304 (2011)
https://doi.org/10.1103/PhysRevA.84.010304
28 D. Pitkanen, X. Ma, R. Wickert, P. van Loock, and N. Lütkenhaus, Efficient heralding of photonic qubits with applications to device-independent quantum key distribution, Phys. Rev. A 84(2), 022325 (2011)
https://doi.org/10.1103/PhysRevA.84.022325
29 S. Popescu and D. Rohrlich, Quantum nonlocality as an axiom, Found. Phys. 24(3), 379 (1994)
https://doi.org/10.1007/BF02058098
30 S. Kocsis, G. Y. Xiang, T. C. Ralph, and G. F. Pryde, Heralded noiseless amplification of a photon polarization qubit, Nat. Phys. 9, 23 (2013)
https://doi.org/10.1038/nphys2469
31 N. Bruno, V. Pini, A. Martin, B. Korzh, F. Bussieres, H. Zbinden, N. Gisin, and R. Thew, Heralded amplification of photonic qubits, arXiv: 1507.03210 (2015)
32 There are quantum memories with longer storage times; however, they do not allow incoming photons to be s-tored. They either generate photons that are entangled with the quantum memory (hence, there are no read-write quantum memories, but read-only memories [10]), or they do not have any input-output [11].
[1] Yu-Yu Jin, Sheng-Xian Qin, Hao Zu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Heralded amplification of single-photon entanglement with polarization feature[J]. Front. Phys. , 2018, 13(5): 130321-.
[2] Hong Wang, Bao-Cang Ren, Ai Hua Wang, Ahmed Alsaedi, Tasawar Hayat, Fu-Guo Deng. General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics[J]. Front. Phys. , 2018, 13(5): 130315-.
[3] Ahmed Farouk, J. Batle, M. Elhoseny, Mosayeb Naseri, Muzaffar Lone, Alex Fedorov, Majid Alkhambashi, Syed Hassan Ahmed, M. Abdel-Aty. Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states[J]. Front. Phys. , 2018, 13(2): 130306-.
[4] KIELPINSKI Dave. Ion-trap quantum information processing: experimental status[J]. Front. Phys. , 2008, 3(4): 365-381.
[5] LONG Gui-lu, DENG Fu-guo, WANG Chuan, WEN Kai, WANG Wan-ying, LI Xi-han. Quantum secure direct communication and deterministic secure quantum communication[J]. Front. Phys. , 2007, 2(3): 251-272.
[6] XIE Chang-de, ZHANG Jing, PAN Qing, JIA Xiao-jun, PENG Kun-chi. Continuous variable quantum communication with bright entangled optical beams[J]. Front. Phys. , 2006, 1(4): 383-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed