|
|
Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states |
Ahmed Farouk1( ), J. Batle3, M. Elhoseny1, Mosayeb Naseri4, Muzaffar Lone5, Alex Fedorov6, Majid Alkhambashi7, Syed Hassan Ahmed8, M. Abdel-Aty2 |
1. Faculty of Computer and Information Sciences, Mansoura University, Egypt 2. Applied Science University, Bahrain & Mathematics Dept. Sohag University, Egypt 3. Departament de Física, Universitat de les Illes Balears, 07122 Palma de Mallorca, Balearic Islands, Spain 4. Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran 5. Department of Physics, University of Kashmir, Srinagar-190006, India 6. Russian Quantum Center, 100 Novaya Street, Skolkovo, Moscow 143025, Russia 7. Information Technology Department, Al-Zahra College for Women, P.O. Box 3365, Muscat, Oman 8. School of Computer Science & Engineering, Kyungpook National University, Daegu, Republic of Korea |
|
|
Abstract Quantum communication provides an enormous advantage over its classical counterpart: security of communications based on the very principles of quantum mechanics. Researchers have proposed several approaches for user identity authentication via entanglement. Unfortunately, these protocols fail because an attacker can capture some of the particles in a transmitted sequence and send what is left to the receiver through a quantum channel. Subsequently, the attacker can restore some of the confidential messages, giving rise to the possibility of information leakage. Here we present a new robust General Nuser authentication protocol based on N-particle Greenberger–Horne–Zeilinger (GHZ) states, which makes eavesdropping detection more effective and secure, as compared to some current authentication protocols. The security analysis of our protocol for various kinds of attacks verifies that it is unconditionally secure, and that an attacker will not obtain any information about the transmitted key. Moreover, as the number of transferred key bits N becomes larger, while the number of users for transmitting the information is increased, the probability of effectively obtaining the transmitted authentication keys is reduced to zero.
|
Keywords
quantum communication
quantum cryptography
quantum authentication
entanglement
|
Corresponding Author(s):
Ahmed Farouk
|
Issue Date: 27 November 2017
|
|
1 |
C. H.Bennett and G.Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci. 560, 7 (2014)
https://doi.org/10.1016/j.tcs.2014.05.025
|
2 |
M.Nielsenand I.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
|
3 |
G. H.Zeng, Quantum Cryptology, Beijing: Science Press, 2006
|
4 |
G.Assche, Quantum Cryptography and Secret-Key Distillation, Cambridge: Cambridge University Press, 2006
https://doi.org/10.1017/CBO9780511617744
|
5 |
M. S.Sharbaf, Quantum Cryptography: A New Generation of Information Technology Security System, Sixth International Conference on Information Technology. Nevada, USA, IEEE, pp 1644–1648, April, 2009
https://doi.org/10.1109/ITNG.2009.173
|
6 |
W. K.Woottersand W. H.Zurek, A single quantum cannot be cloned, Nature299(5886), 802(1982)
https://doi.org/10.1038/299802a0
|
7 |
A.Poppe, M.Peev, and O.Maurhart, Outline of the SECOQC quantum-key distribution network in Vienna, Int. J. Quant. Inf.06(02), 209(2008)
https://doi.org/10.1142/S0219749908003529
|
8 |
M.Peev, et al.., The SECOQC quantum key distribution network in Vienna, New J. Phys. 11(075001), 1367(2009)
https://doi.org/10.1364/OFC.2009.OThL2
|
9 |
C.Elliott, Building the quantum network, New J. Phys. 4, 46(2002)
https://doi.org/10.1088/1367-2630/4/1/346
|
10 |
C.Elliott, A.Colvin, D.Pearson, O.Pikalo, J.Schlafer, and H.Yeh, Current status of the DARPA quantum network, Quantum Information and Computation5815, 138(2005)
|
11 |
A. F.Metwaly, M. Z.Rashad, F. A.Omara, and A. A.Megahed, Architecture of multicast centralized key management scheme using quantum key distribution and classical symmetric encryption, Eur. Phys. J. Spec. Top. 223(8), 1711(2014)
https://doi.org/10.1140/epjst/e2014-02118-x
|
12 |
A.Farouk, M.Zakaria, A.Megahed, and F. A.Omara, A generalized architecture of quantum secure direct communication for N disjointed users with authentication, Sci. Rep. 5(1), 16080(2015)
https://doi.org/10.1038/srep16080
|
13 |
M.Naseri, M. A.Raji, M. R.Hantehzadeh, A.Farouk, A.Boochani, and S.Solaymani, A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation, Quantum Inform. Process. 14(11), 4279(2015)
https://doi.org/10.1007/s11128-015-1107-9
|
14 |
K.Boströmand T.Felbinger, Deterministic Secure Direct Communication Using Entanglement, Phys. Rev. Lett. 89(18), 187902(2002)
https://doi.org/10.1103/PhysRevLett.89.187902
|
15 |
F.Deng, G.Long, and X.Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky– Rosen pair block, Phys. Rev. A68(4), 042317(2003)
https://doi.org/10.1103/PhysRevA.68.042317
|
16 |
M.Lucamariniand S.Mancini, Secure deterministic communication without entanglement, Phys. Rev. Lett.94(14), 140501(2005)
https://doi.org/10.1103/PhysRevLett.94.140501
|
17 |
A.Zhu, Y.Xia, Q.Fan, and S.Zhang, Secure direct communication based on secret transmitting order of particles, Phys. Rev. A73(2), 022338(2006)
https://doi.org/10.1103/PhysRevA.73.022338
|
18 |
H.Lee, J.Lim, and H.Yang, Quantum direct communication with authentication, Phys. Rev. A73(4), 042305(2006)
https://doi.org/10.1103/PhysRevA.73.042305
|
19 |
T.Wang,Q.Wen, and F.Zhu, Controlled quantum secure direct communication with quantum encryption, Int. J. Quant. Inf.6, 543(2008)
https://doi.org/10.1142/S0219749908004341
|
20 |
C.Wang, F.Deng, Y.Li,X.Liu, and G.Long, Quantum secure direct communication with high dimension quantum superdense coding, Phys. Rev. A71(4), 044305(2005)
https://doi.org/10.1103/PhysRevA.71.044305
|
21 |
T.Gao, F. L.Yan, and Z. X.Wang, A simultaneous quantum secure direct communication scheme between the central party and other M parties, Chin. Phys. Lett.22(10), 2473(2005)
https://doi.org/10.1088/0256-307X/22/10/005
|
22 |
C.Wang, F.Deng, and G.Long, Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state, Opt. Commun.253(1–3), 15(2005)
https://doi.org/10.1016/j.optcom.2005.04.048
|
23 |
J.Wang, Q.Zhang, and C.Tang, Quantum secure direct communication based on order rearrangement of single photons, Phys. Lett. A358(4), 256(2006)
https://doi.org/10.1016/j.physleta.2006.05.035
|
24 |
C.Qing-Yu, and L.Bai-Wen, Deterministic secure communication without using entanglement, Chin. Phys. Lett.21(4), 601(2004)
https://doi.org/10.1088/0256-307X/21/4/003
|
25 |
Q. Y.Cai, Eavesdropping on the two-way quantum communication protocols with invisible photons, Phys. Lett. A351(1–2), 23(2006)
https://doi.org/10.1016/j.physleta.2005.10.050
|
26 |
G. L.Long, F.Deng, C.Wang, X.Li, K.Wen, and W.Wang, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China2(3), 251(2007)
https://doi.org/10.1007/s11467-007-0050-3
|
27 |
G. Q.He, J.Zhu, and G.Zeng, Quantum secure communication using continuous variable EPR correlations, Phys. Rev. A73, 1 (2006)
https://doi.org/10.1103/PhysRevA.73.012314
|
28 |
Y.Chang, C.Xu, S.Zhang, and L.Yan, Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad, Chin. Sci. Bull.59(21), 2541(2014)
https://doi.org/10.1007/s11434-014-0339-x
|
29 |
C.Yan, Z.Shi-Bin, and Y.Li-Li, A Bidirectional Quantum Secure Direct Communication Protocol Based on Five-Particle Cluster State, Chin. Phys. Lett. 30(9), 090301(2013)
https://doi.org/10.1088/0256-307X/30/9/090301
|
30 |
W.Li, J.Chen, X.Wang, and C.Li, Quantum Secure Direct Communication Achieved by Using Multi- Entanglement, Int. J. Theor. Phys.54(1), 100(2015)
https://doi.org/10.1007/s10773-014-2205-7
|
31 |
J.Wang, Q.Zhang, and C. J.Tang, Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state, Opt. Commun.266(2), 732(2006)
https://doi.org/10.1016/j.optcom.2006.05.035
|
32 |
X.- M.Xiu, L.Dong, Y.- J.Gao, and F.Chi, Quantum secure direct communication using six-particle maximally entangled states and teleportation, Commum. Theor. Phys.51(3), 429(2009)
https://doi.org/10.1088/0253-6102/51/3/09
|
33 |
P.Yadav, R.Srikanth, and A.Pathak, Twostep orthogonal-state-based protocol of quantum secure direct communication with the help of orderrearrangement technique, Quantum Inform. Process.13(12), 2731(2014)
https://doi.org/10.1007/s11128-014-0825-8
|
34 |
X.Liand H.Barnum, Quantum authentication using entangled states, Int. J. Found. Comput. Sci.15(04), 609(2004)
https://doi.org/10.1142/S0129054104002649
|
35 |
N.Zhou, G.Zeng, W.Zeng, and F.Zhu, Cross-center quantum identification scheme based on teleportation and entanglement swapping, Opt. Commun. 254(4–6), 380(2005)
https://doi.org/10.1016/j.optcom.2005.06.002
|
36 |
D. R.Kuhn, A quantum cryptographic protocol with detection of compromised server, Quantum Inf. Comput. 5(7), 551(2005)
|
37 |
X.Wen, Y.Liu, and N.Zhou, Secure quantum telephone, Opt. Commun.275(1), 278(2007)
https://doi.org/10.1016/j.optcom.2007.03.031
|
38 |
M.Naseri, Eavesdropping on secure quantum telephone protocol with dishonest server, Opt. Commun. 282(16), 3375(2009)
https://doi.org/10.1016/j.optcom.2009.05.012
|
39 |
Y.Sun, Q. Y.Wen, F.Gao, and F. C.Zhu, Improving the security of secure quantum telephone against an attack with fake particles and local operations, Opt. Commun. 282(11), 2278(2009)
https://doi.org/10.1016/j.optcom.2009.02.033
|
40 |
D.Zhangand X.Li, Quantum authentication using orthogonal product states, in: Third International Conference on Natural Computation, ICNC2007, Vol. 4, pp 608–612, IEEE
https://doi.org/10.1109/ICNC.2007.589
|
41 |
B. S.Shi, J.Li, J. M.Liu, X. F.Fan, and G. C.Guo, Quantum key distribution and quantum authentication based on entangled state, Phys. Lett. A281(2–3), 83(2001)
https://doi.org/10.1016/S0375-9601(01)00129-3
|
42 |
T.Wei, C. W.Tsai, and T.Hwang, Comment on quantum key distribution and quantum authentication based on entangled state, Int. J. Theor. Phys. 50(9), 2703(2011)
https://doi.org/10.1007/s10773-011-0768-0
|
43 |
P.Huang, J.Zhu, Y.Lu, and G. H.Zeng, Quantum identity authentication using Gaussian-modulated squeezed states,Int. J. Quant. Inf. 9(2), 701(2011)
https://doi.org/10.1142/S0219749911007745
|
44 |
C. W.Tsai, T. S.Wei, andT.Hwang, One-way quantum authenticated secure communication using rotation operation, Commum. Theor. Phys. 56(6), 1023(2011)
https://doi.org/10.1088/0253-6102/56/6/08
|
45 |
H. X.Ma, P.Huang, W. S.Bao, and G. H.Zeng, Continuous-variable quantum identity authentication based on quantum teleportation, Quantum Inform. Process. 15(6), 2605(2016)
https://doi.org/10.1007/s11128-016-1283-2
|
46 |
N.Penghao, C.Yuan, and L.Chong, Quantum authentication scheme based on entanglement swapping, Int. J. Theor. Phys. 55(1), 302(2016)
https://doi.org/10.1007/s10773-015-2662-7
|
47 |
M.Naseri, Revisiting quantum authentication scheme based on entanglement swapping, Int. J. Theor. Phys. 55(5), 2428(2016)
https://doi.org/10.1007/s10773-015-2880-z
|
48 |
G. J.Simmons, Message Authentication without secrecy: A secure communications problem uniquely solvable by asymmetric encryption techniques, 12th IEEE Annual Electronics and Aerospace Conference, Washington, USA, IEEE, pp 661–662, December, 1979
|
49 |
G. J.Simmons, Authentication theory/coding theory, Advances in Cryptology–Proceedings of Crypto 84, Paris, France, 196, (pp 411–431), Heidelberg: Springer, 1984
|
50 |
A. S.Holevo, Statistical problems in quantum physics, in: Proceedings of the second Japan-USSR Symposiumon probability theory, 330, 104–119(1973)
https://doi.org/10.1007/BFb0061483
|
51 |
A. S.Holevo, The capacity of the quantum channel with general signal states, IEEE Trans. Inf. Theory44(1), 269(1998)
https://doi.org/10.1109/18.651037
|
52 |
A. K.Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett.67(6), 661(1991)
https://doi.org/10.1103/PhysRevLett.67.661
|
53 |
C. H.Bennett, G.Brassard, C.Crépeau,R.Jozsa, A.Peres, and W. K.Wootters,Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett.70(13), 1895(1993)
https://doi.org/10.1103/PhysRevLett.70.1895
|
54 |
F. G.Dengand G. L.Long, Bidirectional quantum key distribution protocol with practical faint laser pulses, Phys. Rev. A70(1), 012311(2004)
https://doi.org/10.1103/PhysRevA.70.012311
|
55 |
N.Gisinand S.Massar, Optimal quantum cloning machines, Phys. Rev. Lett. 79(11), 2153(1997)
https://doi.org/10.1103/PhysRevLett.79.2153
|
56 |
A.Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77(8), 1413(1996)
https://doi.org/10.1103/PhysRevLett.77.1413
|
57 |
F.Giraldiand P.Grigolini, Quantum entanglement and entropy, Phys. Rev. A64(3), 032310(2001)
https://doi.org/10.1103/PhysRevA.64.032310
|
58 |
D.Boschi,S.Branca, F.De Martini, L.Hardy, and S.Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 80(6), 1121(1998)
https://doi.org/10.1103/PhysRevLett.80.1121
|
59 |
M.Hillery, V.Bužek, and A.Berthiaume, Quantum secret sharing, Phys. Rev. A59(3), 1829(1999)
https://doi.org/10.1103/PhysRevA.59.1829
|
60 |
M. A.Nielsen, Conditions for a class of entanglement transformations, Phys. Rev. Lett. 83(2), 436(1999)
https://doi.org/10.1103/PhysRevLett.83.436
|
61 |
R. A.Bertlmannand A.Zeilinger(Eds.), Quantum (un) Speakables: From Bell to Quantum Information, Springer Science & Business Media2013
|
62 |
A.Aspect, J.Dalibard, and G.Roger, Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett. 49(25), 1804(1982)
https://doi.org/10.1103/PhysRevLett.49.1804
|
63 |
L. F.Wei, Y. X.Liu, M. J.Storcz, and F.Nori,Macroscopic Einstein–Podolsky–Rosen pairs in superconducting circuits, Phys. Rev. A73(5), 052307(2006)
https://doi.org/10.1103/PhysRevA.73.052307
|
64 |
J. S.Huang, C. H.Oh, and L. F.Wei, Testing tripartite Mermin inequalities by spectral joint measurements of qubits, Phys. Rev. A83(6), 062108(2011)
https://doi.org/10.1103/PhysRevA.83.062108
|
65 |
J.Uffink, Quadratic Bell inequalities as tests for multipartite entanglement, Phys. Rev. Lett. 88(23), 230406(2002)
https://doi.org/10.1103/PhysRevLett.88.230406
|
66 |
Z.Zhao, Y. A.Chen, A. N.Zhang, T.Yang, H. J.Briegel, and J. W.Pan, Experimental demonstration of five-photon entanglement and open-destination teleportation, Nature430(6995), 54(2004)
https://doi.org/10.1038/nature02643
|
67 |
D.Leibfried, E.Knill,S.Seidelin, J.Britton, R. B.Blakestad, J.Chiaverini, D. B.Hume,W. M.Itano, J. D.Jost, C.Langer, R.Ozeri, R.Reichle, and D. J.Wineland, Creation of a six-atom “Schrödinger cat” state, Nature438(7068), 639(2005)
https://doi.org/10.1038/nature04251
|
68 |
C. Y.Lu, X. Q.Zhou, O.Gühne, W. B.Gao, J.Zhang, Z. S.Yuan, A.Goebel, T.Yang, and J. W.Pan, Experimental entanglement of six photons in graph states, Nat. Phys. 3(2), 91(2007)
|
69 |
Y.Xia, P.Lu, and Y.Zeng, Effective protocol for preparation of N-photon Greenberger–Horne–Zeilinger states with conventional photon detectors, Quantum Inform. Process. 11(2), 605(2012)
https://doi.org/10.1007/s11128-011-0271-9
|
70 |
S. Y.Hao, Y.Xia, J.Song, and N. B.An, One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage, Journal of the Optical Society of America B30(2), 468(2013)
https://doi.org/10.1364/JOSAB.30.000468
|
71 |
Y. F.Huang, B. H.Liu, L.Peng, Y. H.Li, L.Li, C. F.Li, and G. C.Guo, Experimental generation of an eightphoton Greenberger–Horne–Zeilinger state, Nat. Commun.2, 546(2011)
https://doi.org/10.1038/ncomms1556
|
72 |
A.Metwaly, M. Z.Rashad, F. A.Omara, and A. A.Megahed, Architecture of Point to Multipoint QKD Communication Systems (QKDP2MP). In 8th International Conference on Informatics and Systems (INFOS), Cairo, pp NW 25–31, IEEE, May, 2012
|
73 |
A.Farouk, F.Omara, M.Zakria, and A.Megahed, Secured IPsec multicast architecture based on quantum key distribution, in: The International Conference on Electrical and Bio-medical Engineering, Clean Energy and Green Computing, pp 38–47(2015). The Society of Digital Information and Wireless Communication.
|
74 |
M. M.Wang, W.Wang, J. G.Chen, and A.Farouk, Secret sharing of a known arbitrary quantum state with noisy environment, Quantum Inform. Process. 14(11), 4211(2015)
https://doi.org/10.1007/s11128-015-1103-0
|
75 |
M.Naseri, S.Heidari, M.Baghfalaki, N.Fatahi,R.Gheibi, J.Batle, A.Farouk, and A.Habibi, A new secure quantum watermarking scheme, Optik139, 77(2017)
https://doi.org/10.1016/j.ijleo.2017.03.091
|
76 |
J.Batle, O.Ciftja, M.Naseri, M.Ghoranneviss, A.Farouk, and M.Elhoseny, Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement, Phys. Scr.92(5), 055801(2017)
https://doi.org/10.1088/1402-4896/aa6630
|
77 |
H.Geurdes, K.Nagata, T.Nakamura, and A.Farouk, A note on the possibility of incomplete theory, arXiv: 1704.00005 (2017)
|
78 |
J.Batle, A.Farouk, M.Alkhambashi, and S.Abdalla, Multipartite correlation degradation in amplitudedamping quantum channels, J. Korean Phys. Soc. 70(7), 666(2017)
https://doi.org/10.3938/jkps.70.666
|
79 |
J.Batle, M.Naseri, M.Ghoranneviss, A.Farouk, M.Alkhambashi, and M.Elhoseny, Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities, Phys. Rev. A95(3), 032123(2017)
https://doi.org/10.1103/PhysRevA.95.032123
|
80 |
J.Batle, A.Farouk, M.Alkhambashi, and S.Abdalla, Entanglement in the linear-chain Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2, Eur. Phys. J. B90(3), 49(2017)
https://doi.org/10.1140/epjb/e2017-80004-1
|
81 |
J.Batle, M.Alkhambashi, A.Farouk, M.Naseri, and M.Ghoranneviss, Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition, Eur. Phys. J. B90(2), 31(2017)
https://doi.org/10.1140/epjb/e2017-70615-9
|
82 |
K.Nagata, T.Nakamura, J.Batle, S.Abdalla, and A.Farouk, Boolean approach to dichotomic quantum measurement theories, J. Korean Phys. Soc. 70(3), 229(2017)
https://doi.org/10.3938/jkps.70.229
|
83 |
M.Abdolmaleky, M.Naseri, J.Batle, A.Farouk, and L. H.Gong, Red–Green–Blue multi-channel quantum representation of digital images, Optik128, 121(2017)
https://doi.org/10.1016/j.ijleo.2016.09.123
|
84 |
A.Farouk, M.Elhoseny, J.Batle, M.Naseri, and A. E.Hassanien, A proposed architecture for key management schema in centralized quantum network, in: Handbook of Research on Machine Learning Innovations and Trends, pp 997–1021, IGI Global, 2017
https://doi.org/10.4018/978-1-5225-2229-4.ch044
|
85 |
N. R.Zhou, J. F.Li, Z. B.Yu, L. H.Gong, andA.Farouk, New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states, Quantum Inform. Process. 16(1), 4 (2017)
https://doi.org/10.1007/s11128-016-1461-2
|
86 |
J.Batle, M.Abutalib, S.Abdalla, and A.Farouk, Persistence of quantum correlations in a XY spin-chain environment, Eur. Phys. J. B89(11), 247(2016)
https://doi.org/10.1140/epjb/e2016-70377-x
|
87 |
J.Batle, M.Abutalib, S.Abdalla, and A.Farouk, Revival of Bell nonlocality across a quantum spin chain, Int. J. Quant. Inf. 14(07), 1650037(2016)
https://doi.org/10.1142/S0219749916500374
|
88 |
J.Batle, C. R.Ooi, A.Farouk, M.Abutalib, and S.Abdalla, Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inform. Process. 15(8), 3081(2016)
https://doi.org/10.1007/s11128-016-1324-x
|
89 |
J.Batle, A.Bagdasaryan, A.Farouk, M.Abutalib, and S.Abdalla, Quantum correlations in two coupled superconducting charge qubits, Int. J. Mod. Phys. B30(19), 1650123(2016)
https://doi.org/10.1142/S021797921650123X
|
90 |
J.Batle, C. R.Ooi, M.Abutalib, A.Farouk, and S.Abdalla, Quantum information approach to the azurite mineral frustrated quantum magnet, Quantum Inform. Process. 15(7), 2839(2016)
https://doi.org/10.1007/s11128-016-1317-9
|
91 |
J.Batle, C. R.Ooi, A.Farouk, and S.Abdalla, Nonlocality in pure and mixed n-qubit X states, Quantum Inform. Process. 15(4), 1553(2016)
https://doi.org/10.1007/s11128-015-1216-5
|
92 |
J.Batle, C. R.Ooi, A.Farouk, M.Abutalib, and S.Abdalla, Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inform. Process. 15(8), 3081(2016)
https://doi.org/10.1007/s11128-016-1324-x
|
93 |
A. F.Metwaly, M. Z.Rashad, F. A.Omara, and A. A.Megahed, Architecture of multicast network based on quantum secret sharing and measurement, International Research Journal of Engineering and Technology02(03), 2336(2015)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|