Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2015, Vol. 10 Issue (3) : 106802    https://doi.org/10.1007/s11467-015-0467-z
RESEARCH ARTICLE
Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3(111)
Rui-Nan Song1,2,Min-Hui Hu2,Xiang-Rong Chen1,3,Jian-Dong Guo2,4,*()
1. Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
2. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
4. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
 Download: PDF(380 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The growth of SrMnO3 films on SrTiO3(111) substrates by pulsed laser deposition was studied and found to produce cubic and hexagonal (4H) structures in the SrMnO3 films. By adjusting the substrate temperature and oxygen pressure, the stability of the two phases was fine-tuned, resulting in the growth of cubic-SrMnO3(111) or 4H-SrMnO3(0001) film, with the 4H phase being the more stable at room temperature and ambient pressure in the bulk form. The growth temperature of the cubic phase was also further lowered relative to the bulk thermodynamics by strain at the heterointerface, and once obtained, it was stable at temperatures of up to 800 °C.

Keywords oxide film      pulsed laser deposition      heteroepitaxy      SrMnO3     
Corresponding Author(s): Jian-Dong Guo   
Issue Date: 11 June 2015
 Cite this article:   
Rui-Nan Song,Min-Hui Hu,Xiang-Rong Chen, et al. Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3(111)[J]. Front. Phys. , 2015, 10(3): 106802.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0467-z
https://academic.hep.com.cn/fop/EN/Y2015/V10/I3/106802
1 J. Heber, Materials science: Enter the oxides, Nature 459(7243), 28 (2009)
https://doi.org/10.1038/459028a
2 D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, A thin film approach to engineering functionality into oxides, J. Am. Ceram. Soc. 91(8), 2429 (2008)
https://doi.org/10.1111/j.1551-2916.2008.02556.x
3 M. Johnsson and P. Lemmens, Perovskites and thin filmscrystallography and chemistry, J. Phys.: Condens. Matter 20(26), 264001 (2008)
https://doi.org/10.1088/0953-8984/20/26/264001
4 D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nat. Commun. 2, 596 (2011)
https://doi.org/10.1038/ncomms1602
5 Y. Wang, Z. Wang, Z. Fang, and X. Dai, Interaction-induced quantum anomalous Hall phase in (111) bilayer of LaCoO3, arXiv: 1409.6797 (2014).
6 B. Gray, H. N. Lee, J. Liu, J. Chakhalian, and J. W. Freeland, Local electronic and magnetic studies of an artificial La2FeCrO6 double perovskite, Appl. Phys. Lett. 97(1), 013105 (2010)
https://doi.org/10.1063/1.3455323
7 K. Ueda, H. Tabata, and T. Kawai, Ferromagnetism in LaFeO3–LaCrO3 superlattices, Science 280(5366), 1064 (1998)
https://doi.org/10.1126/science.280.5366.1064
8 M. Gibert, P. Zubko, R. Scherwitzl, J. I?iguez, and J. M. Triscone, Exchange bias in LaNiO3–LaMnO3 superlattices, Nat Mater 11(3), 195 (2012)
https://doi.org/10.1038/nmat3224
9 E. Dagotto, T. Hotta, and A. Moreo, Colossal magnetoresistant materials: The key role of phase separation, Phys. Rep. 344(1), 1 (2001)
https://doi.org/10.1016/S0370-1573(00)00121-6
10 A. M. Haghiri-Gosnet and J. P. Renard, CMR manganites: Physics, thin films and devices, J. Phys. D: Appl. Phys. 36(8), R127 (2003)
https://doi.org/10.1088/0022-3727/36/8/201
11 M. Huijben, L. W. Martin, Y. H. Chu, M. B. Holcomb, P. Yu, G. Rijnders, D. H. A. Blank, and R. Ramesh, Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films, Phys. Rev. B 78(9), 094413 (2008)
https://doi.org/10.1103/PhysRevB.78.094413
12 R. Sonden?, P. Ravindran, S. Stolen, T. Grande, and M. Hanfland, Electronic structure and magnetic properties of cubic and hexagonal SrMnO3, Phys. Rev. B 74(14), 144102 (2006)
https://doi.org/10.1103/PhysRevB.74.144102
13 P. D. Battle, T. C. Gibb, and C. W. Jones, The structural and magnetic properties of SrMnO3: A reinvestigation, J. Solid State Chem. 74(1), 60 (1988)
https://doi.org/10.1016/0022-4596(88)90331-3
14 A. A. Belik, Y. Matsushita, Y. Katsuya, M. Tanaka, T. Kolodiazhnyi, M. Isobe, and E. Takayama-Muromachi, Crystal structure and magnetic properties of 6H–SrMnO3, Phys. Rev. B 84(9), 094438 (2011)
https://doi.org/10.1103/PhysRevB.84.094438
15 I. N. González-Jiménez, A. Torres-Pardo, A. E. Sánchez-Peláez, á. Gutiérrez, M. García-Hernández, J. M. González-Calbet, M. Parras, and á. Varela, Synthesis of 4H–SrMnO3.0 nanoparticles from a molecular precursor and their topotactic reduction pathway identified at atomic scale, Chem. Mater. 26(7), 2256 (2014)
https://doi.org/10.1021/cm500068y
16 J. H. Lee and K. M. Rabe, Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles, Phys. Rev. Lett. 104(20), 207204 (2010)
https://doi.org/10.1103/PhysRevLett.104.207204
17 V. M. Goldschmidt, Die Gesetze der Krystallochemie, Naturwissenschaften 14(21), 477 (1926)
https://doi.org/10.1007/BF01507527
18 T. Negas and R. S. Roth, The system SrMnO3-x, J. Solid State Chem. 1(3), 409 (1970)
https://doi.org/10.1016/0022-4596(70)90123-4
19 A. Sacchetti, M. Baldini, P. Postorino, C. Martin, and A. Maignan, Raman spectroscopy on cubic and hexagonal SrMnO3, Journal of Raman Spectroscopy 37(5), 591 (2006)
https://doi.org/10.1002/jrs.1484
20 S. Kobayashi, Y. Tokuda, T. Ohnishi, T. Mizoguchi, N. Shibata, Y. Sato, Y. Ikuhara, and T. Yamamoto, Cation offstoichiometric SrMnO3 thin film grown by pulsed laser deposition, J. Mater. Sci. 46(12), 4354 (2010)
https://doi.org/10.1007/s10853-010-5103-2
21 J. Feng, X. Zhu, and J. Guo, Reconstructions on SrTiO3(111) surface tuned by Ti/Sr deposition, Surf. Sci. 614, 38 (2013)
https://doi.org/10.1016/j.susc.2013.03.020
22 National Bureau of Standards Monograph 25, Section 10–Data for 84 Substances, 58 (1972)
23 R. A. Alberty and R. J. Silbey, <?Pub Caret1?>Physical Chemistry, 3rd Ed., John Wiley &Sons, Inc., 2001
24 For similicity, the horizonal axis of Fig. 3 is plotted in lgPO. The linear dependence of lnPO on 1/TS as described in Eq. (2) remains in the plot since lgPO= lge·lnPO.
25 M. B. Nielsen, D. Ceresoli, P. Parisiades, V. B. Prakapenka, T. Yu, Y. Wang, and M. Bremholm, Phase stability of the SrMnO3 hexagonal perovskite system at high pressure and temperature, Phys. Rev. B 90(21), 214101 (2014)
https://doi.org/10.1103/PhysRevB.90.214101
26 L. Rormark, A. B. Morch, K. Wiik, S. Stolen, and T. Grande, Enthalpies of oxidation of CaMnO3-δ, Ca2 MnO4-δ and SrMnO3-δ deduced redox properties, Chem. Mater. 13(11), 4005 (2001)
https://doi.org/10.1021/cm011050l
27 S. Farokhipoor, C. Magén, S. Venkatesan, J. í?iguez, C. J. M. Daumont, D. Rubi, E. Snoeck, M. Mostovoy, C. de Graaf, A. Müller, M. D?blinger, C. Scheu, and B. Noheda, Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide, Nature 515(7527), 379 (2014)
https://doi.org/10.1038/nature13918
[1] Pei Li, Zhao-Meng Gao, Xiu-Shi Huang, Long-Fei Wang, Wei-Feng Zhang, Hai-Zhong Guo. Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction[J]. Front. Phys. , 2018, 13(5): 136803-.
[2] Fang Yang, Yan Liang, Li-Xia Liu, Qing Zhu, Wei-Hua Wang, Xue-Tao Zhu, Jian-Dong Guo. Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy[J]. Front. Phys. , 2018, 13(5): 136802-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed