|
|
Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium |
Hongwei Xiong1,2,*( ) |
1. Wilczek Quantum Center, Zhejiang University of Technology, Hangzhou 310023, China
2. College of Science, Zhejiang University of Technology, Hangzhou 310023, China |
|
|
Abstract We consider the gravitational effect of quantum wave packets when quantum mechanics, gravity, and thermodynamics are simultaneously considered. Under the assumption of a thermodynamic origin of gravity, we propose a general equation to describe the gravitational effect of quantum wave packets. In the classical limit, this equation agrees with Newton’s law of gravitation. For quantum wave packets, however, it predicts a repulsive gravitational effect. We propose an experimental scheme using superfluid helium to test this repulsive gravitational effect. Our studies show that, with present technology such as superconducting gravimetry and cold atom interferometry, tests of the repulsive gravitational effect for superfluid helium are within experimental reach.
|
Keywords
cold atoms
gravitational effect of quantum wave packet
precision measurement
|
Corresponding Author(s):
Hongwei Xiong
|
Issue Date: 17 August 2015
|
|
1 |
S. Hawking, Black hole explosions? Nature 248(5443), 30 (1974)
https://doi.org/10.1038/248030a0
|
2 |
G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and S. Sarkar, Tests of quantum gravity from observations of γ-ray bursts, Nature 393(6687), 763 (1998)
https://doi.org/10.1038/31647
|
3 |
U. Jacob and T. Piran, Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation, Nat. Phys. 3(2), 87 (2007)
https://doi.org/10.1038/nphys506
|
4 |
I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim, and C. Brukner, Probing Planck-scale physics with quantum optics, Nat. Phys. 8(5), 393 (2012)
https://doi.org/10.1038/nphys2262
|
5 |
R. J. Adler, H. Mueller, and M. L. Perl, A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry, Int. J. Mod. Phys. A 26(29), 4959 (2011)
https://doi.org/10.1142/S0217751X11054814
|
6 |
C. J. Hogan, Measurement of quantum fluctuations in geometry, Phys. Rev. D 77(10), 104031 (2008)
https://doi.org/10.1103/PhysRevD.77.104031
|
7 |
C. J. Hogan and M. G. Jackson, Holographic geometry and noise in matrix theory, Phys. Rev. D 79(12), 124009 (2009)
https://doi.org/10.1103/PhysRevD.79.124009
|
8 |
T. Jacobson, Thermodynamics of spacetime: The Einstein equation of state, Phys. Rev. Lett. 75(7), 1260 (1995)
https://doi.org/10.1103/PhysRevLett.75.1260
|
9 |
J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7(8), 2333 (1973)
https://doi.org/10.1103/PhysRevD.7.2333
|
10 |
J. M. Bardeen, B. Carter, and S. W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31(2), 161 (1973)
https://doi.org/10.1007/BF01645742
|
11 |
S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43(3), 199 (1975)
https://doi.org/10.1007/BF02345020
|
12 |
P. C. W. Davies, Scalar production in Schwarzschild and Rindler metrics, J. Phys. A 8(4), 609 (1975)
https://doi.org/10.1088/0305-4470/8/4/022
|
13 |
W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14(4), 870 (1976)
https://doi.org/10.1103/PhysRevD.14.870
|
14 |
T. Padmanabhan, Thermodynamical aspects of gravity: New insights, Rep. Prog. Phys. 73(4), 046901 (2010)
https://doi.org/10.1088/0034-4885/73/4/046901
|
15 |
See, e.g., R. G. Cai, L. M. Cao, and N. Ohta, Friedmann equations from entropic force, Phys. Rev. D 81, 061501(R) (2010)
|
16 |
T. Padmanabhan, Surface density of spacetime degrees of freedom from equipartition law in theories of gravity, Phys. Rev. D 81(12), 124040 (2010)
https://doi.org/10.1103/PhysRevD.81.124040
|
17 |
F. W. Shu and Y. G. Gong, Equipartition of energy and the first law of thermodynamics at the apparent horizon, Int. J. Mod. Phys. D 20(04), 553 (2011)
https://doi.org/10.1142/S0218271811018883
|
18 |
M. Li and Y. Wang, Quantum UV/IR relations and holographic dark energy from entropic force, Phys. Lett. B 687(2-3), 243 (2010)
https://doi.org/10.1016/j.physletb.2010.03.042
|
19 |
T. W. Wang, Coulomb force as an entropic force, Phys. Rev. D 81(10), 104045 (2010)
https://doi.org/10.1103/PhysRevD.81.104045
|
20 |
P. Nicolini, Entropic force, noncommutative gravity, and ungravity, Phys. Rev. D 82(4), 044030 (2010)
https://doi.org/10.1103/PhysRevD.82.044030
|
21 |
Y. F. Cai and E. N. Saridakis, Inflation in entropic cosmology: Primordial perturbations and non-Gaussianities, Phys. Lett. B 697(4), 280 (2011)
https://doi.org/10.1016/j.physletb.2011.02.020
|
22 |
R. Banerjee and B. R. Majhi, Statistical origin of gravity, Phys. Rev. D 81(12), 124006 (2010)
https://doi.org/10.1103/PhysRevD.81.124006
|
23 |
L. Modesto and A. Randono, Entropic corrections to Newton’s law, arXiv:1003.1998 (2010)
|
24 |
J. W. Lee, On the origin of entropic gravity and inertia, Found. Phys. 42(9), 1153 (2012)
https://doi.org/10.1007/s10701-012-9660-x
|
25 |
M. A. Santos and I. V. Vancea, Entropic law of force, emergent gravity and the uncertainty principle, Mod. Phys. Lett. A 27, 1250012 (2012), arXiv: 1002.2454
https://doi.org/10.1142/S0217732312500125
|
26 |
M. R. Setare and D. Momeni, Time varying gravitational constant G via entropic force, Commum. Theor. Phys. 56(4), 691 (2011)
https://doi.org/10.1088/0253-6102/56/4/17
|
27 |
E. P. Verlinde, On the origin of gravity and the laws of Newton, J. High Energy Phys. 04, 029 (2011)
|
28 |
A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116(3), 1009 (1998)
https://doi.org/10.1086/300499
|
29 |
S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and T. S. C. Project, Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517(2), 565 (1999)
https://doi.org/10.1086/307221
|
30 |
P. J. E. Peebles and B. Ratra, The cosmological constant and dark energy, Rev. Mod. Phys. 75(2), 559 (2003)
https://doi.org/10.1103/RevModPhys.75.559
|
31 |
A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Optics and interferometry with atoms and molecules, Rev. Mod. Phys. 81(3), 1051 (2009)
https://doi.org/10.1103/RevModPhys.81.1051
|
32 |
N. Poli, F. Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli, and G. M. Tino, Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter, Phys. Rev. Lett. 106(3), 038501 (2011)
https://doi.org/10.1103/PhysRevLett.106.038501
|
33 |
P. Cladé, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, and F. Biraben, A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave, Europhys. Lett. 71(5), 730 (2005)
https://doi.org/10.1209/epl/i2005-10163-6
|
34 |
G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, Longlived Bloch oscillations with Bosonic Sr atoms and application to gravity measurement at the micrometer scale, Phys. Rev. Lett. 97(6), 060402 (2006)
https://doi.org/10.1103/PhysRevLett.97.060402
|
35 |
F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, Quantum sensor for atomsurface interactions below 10 μm, Phys. Rev. A 79(1), 013409 (2009)
https://doi.org/10.1103/PhysRevA.79.013409
|
36 |
E. Hoskinson, Y. Sato, and R. Packard, Superfluid He4 interferometer operating near, Phys. Rev. B 74, 100509(R) (2006)
|
37 |
T. M. Niebauer, G. S. Sasagawa, J. E. Faller, R. Hilt, and F. Klopping, A new generation of absolute gravimeters, Metrologia 32(3), 159 (1995)
https://doi.org/10.1088/0026-1394/32/3/004
|
38 |
G. d’Agostino, S. Desogus, A. Germak, C. Origlia, D. Quagliotti, G. Berrino, G. Corrado, V. d’Errico, and G. Ricciardi, The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology, Ann. Geophys. 51, 39 (2008)
|
39 |
S. Svitlov, P. Maslyk, C. Rothleitner, H. Hu, and L. J. Wang, Comparison of three digital fringe signal processing methods in a ballistic free-fall absolute gravimeter, Metrologia 47(6), 677 (2010)
https://doi.org/10.1088/0026-1394/47/6/007
|
40 |
W. A. Prothero and J. Goodkind, A superconducting gravimeter, Rev. Sci. Instrum. 39(9), 1257 (1968)
https://doi.org/10.1063/1.1683645
|
41 |
J. Goodkind, The superconducting gravimeter, Rev. Sci. Instrum. 70(11), 4131 (1999)
https://doi.org/10.1063/1.1150092
|
42 |
H. J. Paik, Superconducting tunable-diaphragm transducer for sensitive acceleration measurements, J. Appl. Phys. 47(3), 1168 (1976)
https://doi.org/10.1063/1.322699
|
43 |
M. V. Moody and H. J. Paik, Gauss’s law test of gravity at short range, Phys. Rev. Lett. 70(9), 1195 (1993)
https://doi.org/10.1103/PhysRevLett.70.1195
|
44 |
S. Kachru, R. Kallosh, A. Linde, and S. P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68(4), 046005 (2003)
https://doi.org/10.1103/PhysRevD.68.046005
|
45 |
R. Penrose, Twistor algebra, J. Math. Phys. 8(2), 345 (1967)
https://doi.org/10.1063/1.1705200
|
46 |
L. Smolin, Newtonian gravity in loop quantum gravity, arXiv: 1001.3668 (2010)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|