Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (3) : 117201    https://doi.org/10.1007/s11467-016-0566-5
RESEARCH ARTICLE
Thermoelectric response of spin polarization in Rashba spintronic systems
Cong Xiao,Dingping Li(),Zhongshui Ma
School of Physics, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
 Download: PDF(291 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Motivated by the recent discovery of a strongly spin–orbit-coupled two-dimensional (2D) electron gas near the surface of Rashba semiconductors BiTeX (X= Cl, Br, I), we calculate the thermoelectric responses of spin polarization in a 2D Rashba model. By self-consistently determining the energyand band-dependent transport time, we present an exact solution of the linearized Boltzmann equation for elastic scattering. Using this solution, we find a non-Edelstein electric-field-induced spin polarization that is linear in the Fermi energy EF when EF lies below the band crossing point. The spin polarization efficiency, which is the electric-field-induced spin polarization divided by the driven electric current, increases for smaller EF .We show that, as a function of EF, the temperaturegradient-induced spin polarization increases continuously to a saturation value when EF decreases below the band crossing point. As the temperature tends to zero, the temperature-gradient-induced spin polarization vanishes.

Keywords thermoelectric response      spin polarization      Rashba spin–orbit coupling      Boltzmann equation      analytical solution     
Corresponding Author(s): Dingping Li   
Online First Date: 31 March 2016    Issue Date: 08 June 2016
 Cite this article:   
Cong Xiao,Dingping Li,Zhongshui Ma. Thermoelectric response of spin polarization in Rashba spintronic systems[J]. Front. Phys. , 2016, 11(3): 117201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0566-5
https://academic.hep.com.cn/fop/EN/Y2016/V11/I3/117201
1 I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323 (2004)
https://doi.org/10.1103/RevModPhys.76.323
2 W. Lai, C. Zhang, and Z. Ma, Single molecular shuttle junction: Shot noise and decoherence, Front. Phys. 10(1), 591 (2015)
https://doi.org/10.1007/s11467-014-0443-z
3 G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Spin caloritronics, Nat. Mater. 11(5), 391 (2012)
https://doi.org/10.1038/nmat3301
4 X. T. Jia and K. Xia, Electric and thermo spin transfer torques in Fe/Vacuum/Fe tunnel junction, Front. Phys. 9(6), 768 (2014)
https://doi.org/10.1007/s11467-013-0375-z
5 J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Universal intrinsic spin Hall effect, Phys. Rev. Lett. 92(12), 126603 (2004)
https://doi.org/10.1103/PhysRevLett.92.126603
6 J. E. Hirsch, Spin Hall effect, Phys. Rev. Lett. 83(9), 1834 (1999)
https://doi.org/10.1103/PhysRevLett.83.1834
7 V. M. Edelstein, Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems, Solid State Commun. 73(3), 233 (1990)
https://doi.org/10.1016/0038-1098(90)90963-C
8 E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling, Phys. Rev. Lett. 93(22), 226602 (2004)
https://doi.org/10.1103/PhysRevLett.93.226602
9 C. Gorini, P. Schwab, M. Dzierzawa, and R. Raimondi, Spin polarizations and spin Hall currents in a twodimensional electron gas with magnetic impurities, Phys. Rev. B 78(12), 125327 (2008)
https://doi.org/10.1103/PhysRevB.78.125327
10 Z. Ma, Spin Hall effect generated by a temperature gradient and heat current in a two-dimensional electron gas, Solid State Commun. 150(11-12), 510 (2010)
https://doi.org/10.1016/j.ssc.2009.11.004
11 H. Akera and H. Suzuura, Extrinsic spin Nernst effect in two-dimensional electron systems, Phys. Rev. B 87(7), 075301 (2013)
https://doi.org/10.1103/PhysRevB.87.075301
12 J. Borge, C. Gorini, and R. Raimondi, Spin thermoelectrics in a disordered Fermi gas, Phys. Rev. B 87(8), 085309 (2013)
https://doi.org/10.1103/PhysRevB.87.085309
13 P. E. Iglesias and J. A. Maytorena, Absence of thermospin current response of a spin-orbit-coupled two dimensional electron gas, Phys. Rev. B 89(15), 155432 (2014)
https://doi.org/10.1103/PhysRevB.89.155432
14 K. Tauber, M. Gradhand, D. V. Fedorov, and I. Mertig, Extrinsic spin Nernst effect from first principles, Phys. Rev. Lett. 109(2), 026601 (2012)
https://doi.org/10.1103/PhysRevLett.109.026601
15 C. M. Wang and M. Q. Pang, Thermally induced spin polarization and thermal conductivities in a spin-orbit coupled two-dimensional electron gas, Solid State Commun. 150(33-34), 1509 (2010)
https://doi.org/10.1016/j.ssc.2010.06.013
16 A. Dyrdał, M. Inglot, V. K. Dugaev, and J. Barnas, Thermally induced spin polarization of a two-dimensional electron gas, Phys. Rev. B 87(24), 245309 (2013)
https://doi.org/10.1103/PhysRevB.87.245309
17 S. Tölle, C. Gorini, and U. Eckern, Room temperature spin thermoelectrics in metallic films, Phys. Rev. B 90(23), 235117 (2014)
https://doi.org/10.1103/PhysRevB.90.235117
18 E. Cappelluti, C. Grimaldi, and F. Marsiglio, Topological change of the Fermi surface in low-density Rashba gases: Application to superconductivity, Phys. Rev. Lett. 98(16), 167002 (2007)
https://doi.org/10.1103/PhysRevLett.98.167002
19 C. Grimaldi, Electron spin dynamics in impure quantum wells for arbitrary spin-orbit coupling, Phys. Rev. B 72(7), 075307 (2005)
https://doi.org/10.1103/PhysRevB.72.075307
20 L. Wu, J. Yang, S. Wang, P. Wei, J. Yang, W. Zhang, and L. Chen, Thermopower enhancement in quantum wells with the Rashba effect, Appl. Phys. Lett. 105(20), 202115 (2014)
https://doi.org/10.1063/1.4902134
21 C. Grimaldi, E. Cappelluti, and F. Marsiglio, Off-Fermi surface cancellation effects in spin-Hall conductivity of a two-dimensional Rashba electron gas, Phys. Rev. B 73, 081303(R) (2006)
22 K. Tsutsui and S. Murakami, Spin-torque efficiency enhanced by Rashba spin splitting in three dimensions, Phys. Rev. B 86(11), 115201 (2012)
https://doi.org/10.1103/PhysRevB.86.115201
23 J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Gate control of spin-orbit interaction in an inverted In0.53G a0.47As/In0.52Al 0.48As heterostructure, Phys. Rev. Lett. 78(7), 1335 (1997)
https://doi.org/10.1103/PhysRevLett.78.1335
24 S. V. Eremeev, I. A. Nechaev, Yu. M. Koroteev, P. M. Echenique, and E. V. Chulkov, Ideal two-dimensional electron systems with a giant Rashba-type spin splitting in real materials: Surfaces of Bismuth tellurohalides, Phys. Rev. Lett. 108(24), 246802 (2012)
https://doi.org/10.1103/PhysRevLett.108.246802
25 S. V. Eremeev, I. P. Rusinov, I. A. Nechaev, and E. V. Chulkov, Rashba split surface states in BiTeBr, New J. Phys. 15(7), 075015 (2013)
https://doi.org/10.1088/1367-2630/15/7/075015
26 G. Landolt, S. V. Eremeev, Y. M. Koroteev, B. Slomski, S. Muff, T. Neupert, M. Kobayashi, V. N. Strocov, T. Schmitt, Z. S. Aliev, M. B. Babanly, I. R. Amiraslanov, E. V. Chulkov, J. Osterwalder, and J. H. Dil, Disentanglement of surface and bulk Rashba spin splittings in noncentrosymmetric BiTeI, Phys. Rev. Lett. 109(11), 116403 (2012)
https://doi.org/10.1103/PhysRevLett.109.116403
27 G. Landolt, S. V. Eremeev, O. E. Tereshchenko, S. Muff, B. Slomski, K. A. Kokh, M. Kobayashi, T. Schmitt, V. N. Strocov, J. Osterwalder, E. V. Chulkov, and J. Hugo Dil, Bulk and surface Rashba splitting in single termination BiTeCl, New J. Phys. 15(8), 085022 (2013)
https://doi.org/10.1088/1367-2630/15/8/085022
28 A. Crepaldi, L. Moreschini, G. Autes, C. Tournier-Colletta, S. Moser, N. Virk, H. Berger, P. Bugnon, Y. J. Chang, K. Kern, A. Bostwick, E. Rotenberg, O. V. Yazyev, and M. Grioni, Giant ambipolar Rashba effect in the semiconductor BiTeI, Phys. Rev. Lett. 109(9), 096803 (2012)
https://doi.org/10.1103/PhysRevLett.109.096803
29 M. Sakano, M. S. Bahramy, A. Katayama, T. Shimojima, H. Murakawa, Y. Kaneko, W. Malaeb, S. Shin, K. Ono, H. Kumigashira, R. Arita, N. Nagaosa, H. Y. Hwang, Y. Tokura, and K. Ishizaka, Strongly spin-orbit coupled two-dimensional electron gas emerging near the surface of polar semiconductors, Phys. Rev. Lett. 110(10), 107204 (2013)
https://doi.org/10.1103/PhysRevLett.110.107204
30 I. P. Rusinov, I. A. Nechaev, S. V. Eremeev, C. Friedrich, S. Blugel, and E. V. Chulkov, Many-body effects on the Rashba-type spin splitting in bulk bismuth tellurohalides, Phys. Rev. B 87(20), 205103 (2013)
https://doi.org/10.1103/PhysRevB.87.205103
31 J. M. Ziman, Principles of the Theory of Solids, Cambridge: Cambridge University Press, 1972
https://doi.org/10.1017/CBO9781139644075
32 N. A. Sinitsyn, Semiclassical theories of the anomalous Hall effect, J. Phys.: Condens. Matter 20(2), 023201 (2008)
https://doi.org/10.1088/0953-8984/20/02/023201
33 C. Xiao, D. P. Li, and Z. S. Ma, Unconventional thermoelectric behaviors and enhancement of figure of merit in Rashba spintronic systems, arXiv: 1507.04237
34 M. Trushin and J. Schliemann, Anisotropic current induced spin accumulation in the two-dimensional electron gas with spin-orbit coupling, Phys. Rev. B 75(15), 155323 (2007)
https://doi.org/10.1103/PhysRevB.75.155323
35 K. Výborný, A. A. Kovalev, J. Sinova, and T. Jungwirth, Semiclassical framework for the calculation of transport anisotropies, Phys. Rev. B 79(4), 045427 (2009)
https://doi.org/10.1103/PhysRevB.79.045427
36 M. Trushin, K. Vyborny, P. Moraczewski, A. A. Kovalev, J. Schliemann, and T. Jungwirth, Anisotropic magnetoresistance of spin-orbit coupled carriers scattered from polarized magnetic impurities, Phys. Rev. B 80(13), 134405 (2009)
https://doi.org/10.1103/PhysRevB.80.134405
[1] Krisztián Palotás, Gábor Mándi, Werner A. Hofer. Three-dimensional Wentzel–Kramers–Brillouin approach for the simulation of scanning tunneling microscopy and spectroscopy[J]. Front. Phys. , 2014, 9(6): 711-747.
[2] Yu-Ren Shi (石玉仁), Xue-Ling Wang (王雪玲), Guang-Hui Wang (王光辉), Cong-Bo Liu (刘丛波), Zhi-Gang Zhou (周志刚), Hong-Juan Yang(杨红娟). Analytical solutions for the spin-1 Bose–Einstein condensate in a harmonic trap[J]. Front. Phys. , 2013, 8(3): 319-327.
[3] Bing HUANG (黄兵), Qi-min YAN (严琪闽), Zuan-yi LI (李缵轶), Wen-hui DUAN (段文晖). Towards graphene nanoribbon-based electronics[J]. Front Phys Chin, 2009, 4(3): 269-279.
[4] LI Huan, LI Huan, GUO Wei, GUO Wei. Influence of local spin polarization to the Kondo effect[J]. Front. Phys. , 2007, 2(1): 41-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed