Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (6) : 711-747    https://doi.org/10.1007/s11467-013-0354-4
REVIEW ARTICLE
Three-dimensional Wentzel–Kramers–Brillouin approach for the simulation of scanning tunneling microscopy and spectroscopy
Krisztián Palotás1(),Gábor Mándi2,Werner A. Hofer3,*()
1. Department of Theoretical Physics, Budapest University of Technology and Economics, and Condensed Matter Research Group of the Hungarian Academy of Sciences, Budafoki út 8., H-1111 Budapest, Hungary
2. Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary
3. Surface Science Research Centre, University of Liverpool, L69 3BX Liverpool, UK
 Download: PDF(1432 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We review the recently developed three-dimensional (3D) atom-superposition approach for simulating scanning tunneling microscopy (STM) and spectroscopy (STS) based on ab initio electronic structure data. In the method, contributions from individual electron tunneling transitions between the tip apex atom and each of the sample surface atoms are summed up assuming the one-dimensional (1D) Wentzel–Kramers–Brillouin (WKB) approximation in all these transitions. This 3D WKB tunneling model is extremely suitable to simulate spin-polarized STM and STS on surfaces exhibiting a complex noncollinear magnetic structure, i.e., without a global spin quantization axis, at very low computational cost. The tip electronic structure from first principles can also be incorporated into the model, that is often assumed to be constant in energy in the vast majority of the related literature, which could lead to a misinterpretation of experimental findings. Using this approach, we highlight some of the electron tunneling features on a prototype frustrated hexagonal antiferromagnetic Cr monolayer on Ag(111) surface. We obtain useful theoretical insights into the simulated quantities that is expected to help the correct evaluation of experimental results. By extending the method to incorporate a simple orbital dependent electron tunneling transmission, we reinvestigate the bias voltage- and tip-dependent contrast inversion effect on theW(110) surface. STM images calculated using this orbital dependent model agree reasonably well with Tersoff-Hamann and Bardeen results. The computational efficiency of the model is remarkable as the k-point samplings of the surface and tip Brillouin zones do not affect the computational time, in contrast to the Bardeen method. In a certain case we obtain a relative computational time gain of 8500 compared to the Bardeen calculation, without the loss of quality. We discuss the advantages and limitations of the 3D WKB method, and show further ways to improve and extend it.

Keywords electron tunneling      STM      tunneling transmission      spin polarization      metal surfaces      contrast inversion      STS      WKB     
Corresponding Author(s): Werner A. Hofer   
Issue Date: 24 December 2014
 Cite this article:   
Krisztián Palotás,Gábor Mándi,Werner A. Hofer. Three-dimensional Wentzel–Kramers–Brillouin approach for the simulation of scanning tunneling microscopy and spectroscopy[J]. Front. Phys. , 2014, 9(6): 711-747.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0354-4
https://academic.hep.com.cn/fop/EN/Y2014/V9/I6/711
1 G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Tunneling through a controllable vacuum gap, Appl. Phys. Lett., 1982, 40(2): 178
https://doi.org/10.1063/1.92999
2 G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Surface studies by scanning tunneling microscopy, Phys. Rev. Lett., 1982, 49(1): 57
https://doi.org/10.1103/PhysRevLett.49.57
3 W. A. Hofer, A. S. Foster, and A. L. Shluger, Theories of scanning probe microscopes at the atomic scale, Rev. Mod. Phys., 2003, 75(4): 1287
https://doi.org/10.1103/RevModPhys.75.1287
4 W. A. Hofer, Challenges and errors: Interpreting high resolution images in scanning tunneling microscopy, Prog. Surf. Sci., 2003, 71(5-8): 147
https://doi.org/10.1016/S0079-6816(03)00005-4
5 V. A. Ukraintsev, Data evaluation technique for electrontunneling spectroscopy, Phys. Rev. B, 1996, 53(16): 11176
https://doi.org/10.1103/PhysRevB.53.11176
6 B. Koslowski, C. Dietrich, A. Tschetschetkin, and P. Ziemann, Evaluation of scanning tunneling spectroscopy data: Approaching a quantitative determination of the electronic density of states, Phys. Rev. B, 2007, 75(3): 035421
https://doi.org/10.1103/PhysRevB.75.035421
7 M. Passoni, F. Donati, A. Li Bassi, C. S. Casari, and C. E. Bottani, Recovery of local density of states using scanning tunneling spectroscopy, Phys. Rev. B, 2009, 79(4): 045404
https://doi.org/10.1103/PhysRevB.79.045404
8 M. Ziegler, N. Néel, A. Sperl, J. Kr?ger, and R. Berndt, Local density of states from constant-current tunneling spectra, Phys. Rev. B, 2009, 80(12): 125402
https://doi.org/10.1103/PhysRevB.80.125402
9 B. Koslowski, H. Pfeifer, and P. Ziemann, Deconvolution of the electronic density of states of tip and sample from scanning tunneling spectroscopy data: Proof of principle, Phys. Rev. B, 2009, 80(16): 165419
https://doi.org/10.1103/PhysRevB.80.165419
10 K. Palotás, W. A. Hofer, and L. Szunyogh, Simulation of spin-polarized scanning tunneling spectroscopy on complex magnetic surfaces: Case of a Cr monolayer on Ag(111), Phys. Rev. B, 2012, 85(20): 205427
https://doi.org/10.1103/PhysRevB.85.205427
11 M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 2002, 65(16): 165401
https://doi.org/10.1103/PhysRevB.65.165401
12 J. Tersoff and D. R. Hamann, Theory and application for the scanning tunneling microscope, Phys. Rev. Lett., 1983, 50(25): 1998
https://doi.org/10.1103/PhysRevLett.50.1998
13 J. Tersoff and D. R. Hamann, Theory of the scanning tunneling microscope, Phys. Rev. B, 1985, 31(2): 805
https://doi.org/10.1103/PhysRevB.31.805
14 J. Bardeen, Tunnelling from a many-particle point of view, Phys. Rev. Lett., 1961, 6(2): 57
https://doi.org/10.1103/PhysRevLett.6.57
15 D. Wortmann, S. Heinze, P. Kurz, G. Bihlmayer, and S. Blügel, Resolving complex atomic-scale spin structures by spin-polarized scanning tunneling microscopy, Phys. Rev. Lett., 2001, 86(18): 4132
https://doi.org/10.1103/PhysRevLett.86.4132
16 W. A. Hofer and A. Garcia-Lekue, Differential tunneling spectroscopy simulations: Imaging surface states, Phys. Rev. B, 2005, 71(8): 085401
https://doi.org/10.1103/PhysRevB.71.085401
17 T. Kwapiński and M. Ja?ochowski, Signature of tip electronic states on tunneling spectra, Surf. Sci., 2010, 604(19-20): 1752
https://doi.org/10.1016/j.susc.2010.06.026
18 H. Ness and F. Gautier, The electronic structure and stability of transition metal nanotips (I), J. Phys.: Condens. Matter, 1995, 7(33): 6625
https://doi.org/10.1088/0953-8984/7/33/004
19 H. Ness and F. Gautier, The electronic structure of transition metal interacting tip and sample and atomic force microscopy (II), J. Phys.: Condens. Matter, 1995, 7(33): 6641
https://doi.org/10.1088/0953-8984/7/33/005
20 H. Ness and F. Gautier, Theoretical study of the interaction between a magnetic nanotip and a magnetic surface, Phys. Rev. B, 1995, 52(10): 7352
https://doi.org/10.1103/PhysRevB.52.7352
21 C. J. Chen, Tunneling matrix elements in three-dimensional space: The derivative rule and the sum rule, Phys. Rev. B, 1990, 42(14): 8841
https://doi.org/10.1103/PhysRevB.42.8841
22 W. Sacks, Tip orbitals and the atomic corrugation of metal surfaces in scanning tunneling microscopy, Phys. Rev. B, 2000, 61(11): 7656
https://doi.org/10.1103/PhysRevB.61.7656
23 C. J. Chen, Effects of m ≠ 0 tip states in scanning tunneling microscopy: The explanations of corrugation reversal, Phys. Rev. Lett., 1992, 69(11): 1656
https://doi.org/10.1103/PhysRevLett.69.1656
24 N. Mingo, L. Jurczyszyn, F. J. Garcia-Vidal, R. Saiz-Pardo, P. L. de Andres, F. Flores, S. Y. Wu, and W. More, Theory of the scanning tunneling microscope: Xe on Ni and Al, Phys. Rev. B, 1996, 54(3): 2225
https://doi.org/10.1103/PhysRevB.54.2225
25 F. Calleja, A. Arnau, J. J. Hinarejos, A. L. Vázquez de Parga, W. A. Hofer, P. M. Echenique, and R. Miranda, Contrast reversal and shape changes of atomic adsorbates measured with scanning tunneling microscopy, Phys. Rev. Lett., 2004, 92(20): 206101
https://doi.org/10.1103/PhysRevLett.92.206101
26 G. Teobaldi, M. Pe?alba, A. Arnau, N. Lorente, and W. A. Hofer, Including the probe tip in theoretical models of inelastic scanning tunneling spectroscopy: CO on Cu(100), Phys. Rev. B, 2007, 76(23): 235407
https://doi.org/10.1103/PhysRevB.76.235407
27 A. Garcia-Lekue, D. Sanchez-Portal, A. Arnau, and T. Frederiksen, Simulation of inelastic electron tunneling spectroscopy of single molecules with functionalized tips, Phys. Rev. B, 2011, 83(15): 155417
https://doi.org/10.1103/PhysRevB.83.155417
28 L. Vitali, S. D. Borisova, G. G. Rusina, E. V. Chulkov, and K. Kern, Inelastic electron tunneling spectroscopy: A route to the identification of the tip-apex structure, Phys. Rev. B, 2010, 81(15): 153409
https://doi.org/10.1103/PhysRevB.81.153409
29 C. Sirvent, J. G. Rodrigo, S. Vieira, L. Jurczyszyn, N. Mingo, and F. Flores, Conductance step for a single-atom contact in the scanning tunneling microscope: Noble and transition metals, Phys. Rev. B, 1996, 53(23): 16086
https://doi.org/10.1103/PhysRevB.53.16086
30 M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B, 1985, 31(10): 6207
https://doi.org/10.1103/PhysRevB.31.6207
31 J. Cerdá, M. A. Van Hove, P. Sautet, and M. Salmeron, Efficient method for the simulation of STM images (I): Generalized Green-function formalism, Phys. Rev. B, 1997, 56(24): 15885
https://doi.org/10.1103/PhysRevB.56.15885
32 M. Brandbyge, M. R. Sorensen, and K. W. Jacobsen, Conductance eigenchannels in nanocontacts, Phys. Rev. B, 1997, 56(23): 14956
https://doi.org/10.1103/PhysRevB.56.14956
33 M. Brandbyge, N. Kobayashi, and M. Tsukada, Conduction channels at finite bias in single-atom gold contacts, Phys. Rev. B, 1999, 60(24): 17064
https://doi.org/10.1103/PhysRevB.60.17064
34 A. Bagrets, N. Papanikolaou, and I. Mertig, Ab initio approach to the ballistic transport through single atoms, Phys. Rev. B, 2006, 73(4): 045428
https://doi.org/10.1103/PhysRevB.73.045428
35 A. Bagrets, N. Papanikolaou, and I. Mertig, Conduction eigenchannels of atomic-sized contacts: Ab initio KKR Green’s function formalism, Phys. Rev. B, 2007, 75(23): 235448
https://doi.org/10.1103/PhysRevB.75.235448
36 M. Polok, A. Bagrets, D. V. Fedorov, P. Zahn, and I. Mertig, Evaluation of conduction eigenchannels of an adatom probed by an STM tip, Phys. Rev. B, 2011, 83(24): 245426
https://doi.org/10.1103/PhysRevB.83.245426
37 E. M. L. Plumer, J. van Ek, and D. Weller, The Physics of Ultra-High Density Magnetic Recording, Springer Series in Surface Science Vol. 41, Berlin: Springer, 2001
38 N. Weiss, T. Cren, M. Epple, S. Rusponi, G. Baudot, S. Rohart, A. Tejeda, V. Repain, S. Rousset, P. Ohresser, F. Scheurer, P. Bencok, and H. Brune, Uniform magnetic properties for an ultrahigh-density lattice of noninteracting co nanostructures, Phys. Rev. Lett., 2005, 95(15): 157204
https://doi.org/10.1103/PhysRevLett.95.157204
39 D. Serrate, P. Ferriani, Y. Yoshida, S. W. Hla, M. Menzel, K. von Bergmann, S. Heinze, A. Kubetzka, and R. Wiesendanger, Imaging and manipulating the spin direction of individual atoms, Nat. Nanotechnol., 2010, 5(5): 350
https://doi.org/10.1038/nnano.2010.64
40 K. Tao, V. S. Stepanyuk, W. Hergert, I. Rungger, S. Sanvito, and P. Bruno, Switching a single spin on metal surfaces by a STM tip: Ab initio studies, Phys. Rev. Lett., 2009, 103(5): 057202
https://doi.org/10.1103/PhysRevLett.103.057202
41 M. Bode, Spin-polarized scanning tunnelling microscopy, Rep. Prog. Phys., 2003, 66(4): 523
https://doi.org/10.1088/0034-4885/66/4/203
42 R. Wiesendanger, Spin mapping at the nanoscale and atomic scale, Rev. Mod. Phys., 2009, 81(4): 1495
https://doi.org/10.1103/RevModPhys.81.1495
43 W. Wulfhekel and C. L. Gao, Investigation of non-collinear spin states with scanning tunneling microscopy, J. Phys.: Condens. Matter, 2010, 22(8): 084021
https://doi.org/10.1088/0953-8984/22/8/084021
44 M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger, Chiral magnetic order at surfaces driven by inversion asymmetry, Nature, 2007, 447(7141): 190
https://doi.org/10.1038/nature05802
45 C. L. Gao, W. Wulfhekel, and J. Kirschner, Revealing the 120° antiferromagnetic Néel structure in real space: One monolayer Mn on Ag(111), Phys. Rev. Lett., 2008, 101(26): 267205
https://doi.org/10.1103/PhysRevLett.101.267205
46 M. Wa?niowska, S. Schr?der, P. Ferriani, and S. Heinze, Real space observation of spin frustration in Cr on a triangular lattice, Phys. Rev. B, 2010, 82(1): 012402
https://doi.org/10.1103/PhysRevB.82.012402
47 S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nat. Phys., 2011, 7(9): 713
https://doi.org/10.1038/nphys2045
48 M. Takada, P. L. Gastelois, M. Przybylski, and J. Kirschner, A complex magnetic structure of ultrathin Fe films on Rh (001) surfaces, J. Magn. Magn. Mater., 2013, 329: 95
https://doi.org/10.1016/j.jmmm.2012.10.010
49 P. Ferriani, K. von Bergmann, E. Y. Vedmedenko, S. Heinze, M. Bode, M. Heide, G. Bihlmayer, S. Blügel, and R. Wiesendanger, Atomic-scale spin spiral with a unique rotational sense: Mn monolayer on W(001), Phys. Rev. Lett., 2008, 101(2): 027201
https://doi.org/10.1103/PhysRevLett.101.027201
50 J. Kudrnovsky, F. Máca, I. Turek, and J. Redinger, Substrate-induced antiferromagnetism of a Fe monolayer on the Ir(001) surface, Phys. Rev. B, 2009, 80(6): 064405
https://doi.org/10.1103/PhysRevB.80.064405
51 A. Deák, L. Szunyogh, and B. újfalussy, Thicknessdependent magnetic structure of ultrathin Fe/Ir(001) films: From spin-spiral states toward ferromagnetic order, Phys. Rev. B, 2011, 84(22): 224413
https://doi.org/10.1103/PhysRevB.84.224413
52 L. Balogh, K. Palotás, L. Udvardi, L. Szunyogh, and U. Nowak, Theoretical study of magnetic domain walls through a cobalt nanocontact, Phys. Rev. B, 2012, 86(2): 024406
https://doi.org/10.1103/PhysRevB.86.024406
53 A. Antal, B. Lazarovits, L. Udvardi, L. Szunyogh, B. újfalussy, and P. Weinberger, First-principles calculations of spin interactions and the magnetic ground states of Cr trimers on Au(111), Phys. Rev. B, 2008, 77(17): 174429
https://doi.org/10.1103/PhysRevB.77.174429
54 L. Udvardi, A. Antal, L. Szunyogh, á. Buruzs, and P. Weinberger, Magnetic pattern formation on the nanoscale due to relativistic exchange interactions, Physica B, 2008, 403(2-3): 402
https://doi.org/10.1016/j.physb.2007.08.060
55 R. Yang, H. Yang, A. R. Smith, A. Dick, and J. Neugebauer, Energy-dependent contrast in atomic-scale spin-polarized scanning tunneling microscopy of Mn3N2 (010): Experiment and first-principles theory, Phys. Rev. B, 2006, 74(11): 115409
https://doi.org/10.1103/PhysRevB.74.115409
56 K. Palotás, W. A. Hofer, and L. Szunyogh, Simulation of spin-polarized scanning tunneling microscopy on complex magnetic surfaces: Case of a Cr monolayer on Ag(111), Phys. Rev. B, 2011, 84(17): 174428
https://doi.org/10.1103/PhysRevB.84.174428
57 K. Palotás, Prediction of the bias voltage dependent magnetic contrast in spin-polarized scanning tunneling microscopy, Phys. Rev. B, 2013, 87(2): 024417
https://doi.org/10.1103/PhysRevB.87.024417
58 W. A. Hofer, K. Palotás, S. Rusponi, T. Cren, and H. Brune, Role of hydrogen in giant spin polarization observed on magnetic nanostructures, Phys. Rev. Lett., 2008, 100(2): 026806
https://doi.org/10.1103/PhysRevLett.100.026806
59 K. von Bergmann, M. Menzel, D. Serrate, Y. Yoshida, S. Schr?der, P. Ferriani, A. Kubetzka, R. Wiesendanger, and S. Heinze, Tunneling anisotropic magnetoresistance on the atomic scale, Phys. Rev. B, 2012, 86(13): 134422
https://doi.org/10.1103/PhysRevB.86.134422
60 N. Néel, S. Schr?der, N. Ruppelt, P. Ferriani, J. Kr?ger, R. Berndt, and S. Heinze, Tunneling anisotropic magnetoresistance at the single-atom limit, Phys. Rev. Lett., 2013, 110(3): 037202
https://doi.org/10.1103/PhysRevLett.110.037202
61 N. Néel, J. Kr?ger, L. Limot, K. Palotá, W. A. Hofer, and R. Berndt, Conductance and Kondo effect in a controlled single-atom contact, Phys. Rev. Lett., 2007, 98(1): 016801
https://doi.org/10.1103/PhysRevLett.98.016801
62 K. R. Patton, S. Kettemann, A. Zhuravlev, and A. Lichtenstein, Spin-polarized tunneling microscopy and the Kondo effect, Phys. Rev. B, 2007, 76(10): 100408
https://doi.org/10.1103/PhysRevB.76.100408
63 T. Uchihashi, J. Zhang, J. Kr?ger, and R. Berndt, Quantum modulation of the Kondo resonance of Co adatoms on Cu/Co/Cu(100): Low-temperature scanning tunneling spectroscopy study, Phys. Rev. B, 2008, 78(3): 033402
https://doi.org/10.1103/PhysRevB.78.033402
64 P. Roura-Bas, M. A. Barral, and A. M. Llois, Co impurities on Ag and Cu: Kondo temperature dependence on substrate orientation, Phys. Rev. B, 2009, 79(7): 075410
https://doi.org/10.1103/PhysRevB.79.075410
65 K. R. Patton, H. Hafermann, S. Brener, A. I. Lichtenstein, and M. I. Katsnelson, Probing the Kondo screening cloud via tunneling-current conductance fluctuations, Phys. Rev. B, 2009, 80(21): 212403
https://doi.org/10.1103/PhysRevB.80.212403
66 N. Néel, J. Kr?ger, and R. Berndt, Kondo effect of a Co atom on Cu(111) in contact with an iron tip, Phys. Rev. B, 2010, 82(23): 233401
https://doi.org/10.1103/PhysRevB.82.233401
67 D. J. Choi, M. V. Rastei, P. Simon, and L. Limot, Conductance-driven change of the Kondo effect in a single cobalt atom, Phys. Rev. Lett., 2012, 108(26): 266803
https://doi.org/10.1103/PhysRevLett.108.266803
68 O. újsághy, J. Kroha, L. Szunyogh, and A. Zawadowski, Theory of the Fano resonance in the stm tunneling density of states due to a single Kondo impurity, Phys. Rev. Lett., 2000, 85(12): 2557
https://doi.org/10.1103/PhysRevLett.85.2557
69 L. Gao, W. Ji, Y. B. Hu, Z. H. Cheng, Z. T. Deng, Q. Liu, N. Jiang, X. Lin, W. Guo, S. X. Du, W. A. Hofer, X. C. Xie, and H. J. Gao, Site-specific Kondo effect at ambient temperatures in iron-based molecules, Phys. Rev. Lett., 2007, 99(10): 106402
https://doi.org/10.1103/PhysRevLett.99.106402
70 J. A. Aguiar-Hualde, G. Chiappe, E. Louis, and E. V. Anda, Kondo effect in transport through molecules adsorbed on metal surfaces: From Fano dips to Kondo peaks, Phys. Rev. B, 2007, 76(15): 155427
https://doi.org/10.1103/PhysRevB.76.155427
71 J. A. Aguiar-Hualde, G. Chiappe, E. Louis, E. V. Anda, and J. Simonin, Kondo resonance in the conductance of CoPc/Au(111) and TBrPP-Co/Cu(111), Phys. Rev. B, 2009, 79(15): 155415
https://doi.org/10.1103/PhysRevB.79.155415
72 A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Fano resonances in nanoscale structures, Rev. Mod. Phys., 2010, 82(3): 2257
https://doi.org/10.1103/RevModPhys.82.2257
73 Y. Yayon, V. W. Brar, L. Senapati, S. C. Erwin, and M. F. Crommie, Observing spin polarization of individual magnetic adatoms, Phys. Rev. Lett., 2007, 99(6): 067202
https://doi.org/10.1103/PhysRevLett.99.067202
74 B. W. Heinrich, C. Iacovita, M. V. Rastei, L. Limot, J. P. Bucher, P. A. Ignatiev, V. S. Stepanyuk, and P. Bruno, Spin structure of an atomic protrusion: Probing single atoms on cobalt nanoislands, Phys. Rev. B, 2009, 79(11): 113401
https://doi.org/10.1103/PhysRevB.79.113401
75 L. Zhou, F. Meier, J. Wiebe, and R. Wiesendanger, Inversion of spin polarization above individual magnetic adatoms, Phys. Rev. B, 2010, 82(1): 012409
https://doi.org/10.1103/PhysRevB.82.012409
76 P. Ferriani, C. Lazo, and S. Heinze, Origin of the spin polarization of magnetic scanning tunneling microscopy tips, Phys. Rev. B, 2010, 82(5): 054411
https://doi.org/10.1103/PhysRevB.82.054411
77 J. Wiebe, L. Zhou, and R. Wiesendanger, Atomic magnetism revealed by spin-resolved scanning tunnelling spectroscopy, J. Phys. D Appl. Phys., 2011, 44(46): 464009
https://doi.org/10.1088/0022-3727/44/46/464009
78 M. Ternes, A. J. Heinrich, and W. D. Schneider, Spectroscopic manifestations of the Kondo effect on single adatoms, J. Phys.: Condens. Matter, 2009, 21(5): 053001
https://doi.org/10.1088/0953-8984/21/5/053001
79 K. Schouteden, D. A. Muzychenko, and C. Van Haesendonck, Spin-polarized scanning tunneling spectroscopy of self-organized nanoscale Co islands on Au(111) surfaces, J. Nanosci. Nanotechnol., 2008, 8(7): 3616
https://doi.org/10.1166/jnn.2008.412
80 K. Schouteden, E. Lijnen, E. Janssens, A. Ceulemans, L. F. Chibotaru, P. Lievens, and C. Van Haesendonck, Confinement of surface state electrons in self-organized Co islands on Au(111), New J. Phys., 2008, 10(4): 043016
https://doi.org/10.1088/1367-2630/10/4/043016
81 K. Schouteden, D. A. Muzychenko, P. Lievens, and C. Van Haesendonck, Low-temperature scanning tunneling microscopy and spectroscopy investigation of the electronic surface state of self-organized Cr islands on Au(111), J. Nanosci. Nanotechnol., 2009, 9(11): 6767
https://doi.org/10.1166/jnn.2009.1478
82 K. Schouteden and C. Van Haesendonck, Narrow Au(111) terraces decorated by self-organized Co nanowires: A lowtemperature STM/STS investigation, J. Phys. Condens. Matter, 2010, 22(25): 255504
https://doi.org/10.1088/0953-8984/22/25/255504
83 K. Schouteden, K. Lauwaet, D. A. Muzychenko, P. Lievens, and C. Van Haesendonck, Spin-dependent electronic structure of self-organized Co nanomagnets, New J. Phys., 2011, 13(3): 033030
https://doi.org/10.1088/1367-2630/13/3/033030
84 A. A. Khajetoorians, J. Wiebe, B. Chilian, and R. Wiesendanger, Realizing all-spin-based logic operations atom by atom, Science, 2011, 332(6033): 1062
https://doi.org/10.1126/science.1201725
85 B. W. Heinrich, C. Iacovita, M. V. Rastei, L. Limot, P. A. Ignatiev, V. S. Stepanyuk, and J. P. Bucher, A spin-selective approach for surface states at Co nanoislands, Eur. Phys. J. B, 2010, 75(1): 49
https://doi.org/10.1140/epjb/e2010-00054-1
86 M. Passoni and C. E. Bottani, Transfer Hamiltonian analytical theory of scanning tunneling spectroscopy, Phys. Rev. B, 2007, 76(11): 115404
https://doi.org/10.1103/PhysRevB.76.115404
87 F. Donati, S. Piccoli, C. E. Bottani, and M. Passoni, Threedimensional approach to scanning tunneling spectroscopy and application to Shockley states, New J. Phys., 2011, 13(5): 053058
https://doi.org/10.1088/1367-2630/13/5/053058
88 G. Rodary, S. Wedekind, H. Oka, D. Sander, and J. Kirschner, Characterization of tips for spin-polarized scanning tunneling microscopy, Appl. Phys. Lett., 2009, 95(15): 152513
https://doi.org/10.1063/1.3246150
89 K. Palotás, W. A. Hofer, and L. Szunyogh, Theoretical study of the role of the tip in enhancing the sensitivity of differential conductance tunneling spectroscopy on magnetic surfaces, Phys. Rev. B, 2011, 83(21): 214410
https://doi.org/10.1103/PhysRevB.83.214410
90 S. Heinze, Simulation of spin-polarized scanning tunneling microscopy images of nanoscale non-collinear magnetic structures, Appl. Phys. A, 2006, 85(4): 407
https://doi.org/10.1007/s00339-006-3692-z
91 K. Palotás, G. Mándi, and L. Szunyogh, Orbital-dependent electron tunneling within the atom superposition approach: Theory and application to W(110), Phys. Rev. B, 2012, 86(23): 235415
https://doi.org/10.1103/PhysRevB.86.235415
92 W. A. Hofer and A. J. Fisher, Simulation of spin-resolved scanning tunneling microscopy: influence of the magnetization of surface and tip, J. Magn. Magn. Mater., 2003, 267(2): 139
https://doi.org/10.1016/S0304-8853(03)00346-9
93 A. R. Smith, R. Yang, H. Yang, W. R. L. Lambrecht, A. Dick, and J. Neugebauer, Aspects of spin-polarized scanning tunneling microscopy at the atomic scale: Experiment, theory, and simulation, Surf. Sci., 2004, 561(2-3): 154
https://doi.org/10.1016/j.susc.2004.05.011
94 H. Yang, A. R. Smith, M. Prikhodko, and W. R. L. Lambrecht, Atomic-Scale Spin-Polarized Scanning Tunneling Microscopy Applied to Mn3N2(010), Phys. Rev. Lett., 2002, 89(22): 226101
https://doi.org/10.1103/PhysRevLett.89.226101
95 N. D. Lang, Spectroscopy of single atoms in the scanning tunneling microscope, Phys. Rev. B, 1986, 34(8): 5947
https://doi.org/10.1103/PhysRevB.34.5947
96 M. Becker and R. Berndt, Influence of band structure on the apparent barrier height in scanning tunneling microscopy, Phys. Rev. B, 2010, 81(3): 035426
https://doi.org/10.1103/PhysRevB.81.035426
97 M. Becker, and R. Berndt, Contrast inversion of the apparent barrier height of Pb thin films in scanning tunneling microscopy, Appl. Phys. Lett., 2010, 96(3): 033112
https://doi.org/10.1063/1.3291114
98 W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Condens. Matter, 2009, 21(8): 084204
https://doi.org/10.1088/0953-8984/21/8/084204
99 C. J. Chen, Introduction to Scanning Tunneling Microscopy, Chapter 6, Oxford: Oxford University Press, 1993
100 H. F. Ding, W. Wulfhekel, J. Henk, P. Bruno, and J. Kirschner, Absence of zero-bias anomaly in spin-polarized vacuum tunneling in Co(0001), Phys. Rev. Lett., 2003, 90(11): 116603
https://doi.org/10.1103/PhysRevLett.90.116603
101 A. Tange, C. L. Gao, B. Y. Yavorsky, I. V. Maznichenko, C. Etz, A. Ernst, W. Hergert, I. Mertig, W. Wulfhekel, and J. Kirschner, Electronic structure and spin polarization of the Fe(001)-p(1×1)O surface, Phys. Rev. B, 2010, 81(19): 195410
https://doi.org/10.1103/PhysRevB.81.195410
102 W. Krenner, D. Kühne, F. Klappenberger, and J. V. Barth, Assessment of scanning tunneling spectroscopy modes inspecting electron confinement in surface-confined supramolecular networks, Scientific Reports, 2013, 3: 1454
https://doi.org/10.1038/srep01454
103 G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
104 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
105 J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond, J. Comput. Chem., 2008, 29(13): 2044
https://doi.org/10.1002/jcc.21057
106 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
107 J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 1992, 45(23): 13244
https://doi.org/10.1103/PhysRevB.45.13244
108 D. Hobbs, G. Kresse, and J. Hafner, Fully unconstrained noncollinear magnetism within the projector augmentedwave method, Phys. Rev. B, 2000, 62(17): 11556
https://doi.org/10.1103/PhysRevB.62.11556
109 D. Hobbs and J. Hafner, Fully unconstrained non-collinear magnetism in triangular Cr and Mn monolayers and overlayers on Cu(111) substrates, J. Phys.: Condens. Matter, 2000, 12(31): 7025
https://doi.org/10.1088/0953-8984/12/31/304
110 H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B, 1976, 13(12): 5188
https://doi.org/10.1103/PhysRevB.13.5188
111 A. Kubetzka, P. Ferriani, M. Bode, S. Heinze, G. Bihlmayer, K. von Bergmann, O. Pietzsch, S. Blügel, and R. Wiesendanger, Revealing antiferromagnetic order of the Fe monolayer on W(001): Spin-polarized scanning tunneling microscopy and first-principles calculations, Phys. Rev. Lett., 2005, 94(8): 087204
https://doi.org/10.1103/PhysRevLett.94.087204
112 S. Heinze, S. Blügel, R. Pascal, M. Bode, and R. Wiesendanger, Prediction of bias-voltage-dependent corrugation reversal for STM images of bcc (110) surfaces: W(110), Ta(110), and Fe(110), Phys. Rev. B, 1998, 58(24): 16432
https://doi.org/10.1103/PhysRevB.58.16432
113 S. Heinze, X. Nie, S. Blügel, and M. Weinert, Electric-fieldinduced changes in scanning tunneling microscopy images of metal surfaces, Chem. Phys. Lett., 1999, 315(3-4): 167
https://doi.org/10.1016/S0009-2614(99)01210-5
114 G. Teobaldi, E. Inami, J. Kanasaki, K. Tanimura, and A. L. Shluger, Role of applied bias and tip electronic structure in the scanning tunneling microscopy imaging of highly oriented pyrolytic graphite, Phys. Rev. B, 2012, 85(8): 085433
https://doi.org/10.1103/PhysRevB.85.085433
115 K. Palotás, and W. A. Hofer, Multiple scattering in a vacuum barrier obtained from real-space wavefunctions, J. Phys.: Condens. Matter, 2005, 17(17): 2705
https://doi.org/10.1088/0953-8984/17/17/019
116 K. S. Wang, P. M. Levy, S. F. Zhang, and L. Szunyogh, On the calculation of the magnetoresistance of tunnel junctions with parallel paths of conduction, Philos. Mag. B, 2003, 83(10): 1255
https://doi.org/10.1080/0141861031000065077
117 M. Ondrá?ek, C. González, and P. Jelínek, Reversal of atomic contrast in scanning probe microscopy on (111) metal surfaces, J. Phys.: Condens. Matter, 2012, 24(8): 084003
https://doi.org/10.1088/0953-8984/24/8/084003
118 L. Szunyogh, B. újfalussy, P. Weinberger, and J. Kollár, Selfconsistent localized KKR scheme for surfaces and interfaces, Phys. Rev. B, 1994, 49(4): 2721
https://doi.org/10.1103/PhysRevB.49.2721
119 R. Zeller, P. H. Dederichs, B. újfalussy, L. Szunyogh, and P. Weinberger, Theory and convergence properties of the screened Korringa-Kohn-Rostoker method, Phys. Rev. B, 1995, 52(12): 8807
https://doi.org/10.1103/PhysRevB.52.8807
120 G. Rodary, J. C. Girard, L. Largeau, C. David, O. Mauguin, and Z. Z. Wang, Atomic structure of tip apex for spinpolarized scanning tunneling microscopy, Appl. Phys. Lett., 2011, 98(8): 082505
https://doi.org/10.1063/1.3558920
[1] Bing Zhang. A quantitative assessment of communicating extra-terrestrial intelligent civilizations in the galaxy and the case of FRB-like signals[J]. Front. Phys. , 2020, 15(5): 54502-.
[2] Junwei Fu (傅俊伟), Shuandi Wang (王栓娣), Zihua Wang (王自华), Kang Liu (刘康), Huangjingwei Li (李黄经纬), Hui Liu (刘恢), Junhua Hu (胡俊华), Xiaowen Xu (徐效文), Hongmei Li (李红梅), Min Liu (刘敏). Graphitic carbon nitride based single-atom photocatalysts[J]. Front. Phys. , 2020, 15(3): 33201-.
[3] Bing Zhang. The delay time of gravitational wave – gamma-ray burst associations[J]. Front. Phys. , 2019, 14(6): 64402-.
[4] Yu Guo, Nan Gao, Yizhen Bai, Jijun Zhao, Xiao Cheng Zeng. Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility[J]. Front. Phys. , 2018, 13(4): 138117-.
[5] Di Yuan, Jun-Long Tian, Fang Lin, Dong-Wei Ma, Jing Zhang, Hai-Tao Cui, Yi Xiao. Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions[J]. Front. Phys. , 2018, 13(3): 130504-.
[6] Long-Jing Yin (殷隆晶),Ke-Ke Bai (白珂珂),Wen-Xiao Wang (王文晓),Si-Yu Li (李思宇),Yu Zhang (张钰),Lin He (何林). Landau quantization of Dirac fermions in graphene and its multilayers[J]. Front. Phys. , 2017, 12(4): 127208-.
[7] Cong Xiao,Dingping Li,Zhongshui Ma. Thermoelectric response of spin polarization in Rashba spintronic systems[J]. Front. Phys. , 2016, 11(3): 117201-.
[8] Kai-Bao Chen,Shu-Yi Wei,Zuo-Tang Liang. Three-dimensional imaging of the nucleon and semi-inclusive high-energy reactions[J]. Front. Phys. , 2015, 10(6): 101204-.
[9] Steven Ritz. Some highlights of the first four years of the Fermi Gamma-ray Space Telescope[J]. Front. Phys. , 2013, 8(6): 693-713.
[10] Neil Gehrels, Soebur Razzaque. Gamma-ray bursts in the swift-Fermi era[J]. Front. Phys. , 2013, 8(6): 661-678.
[11] Shuang-Nan Zhang. Black hole binaries and microquasars[J]. Front. Phys. , 2013, 8(6): 630-660.
[12] Li-Xin Li. Photon diffusion in a relativistically expanding sphere[J]. Front. Phys. , 2013, 8(5): 555-563.
[13] Shi-xuan DU (杜世萱), Ye-liang WANG (王业亮), Qi LIU (刘奇), Hai-gang ZHANG (张海刚), Hai-ming GUO (郭海明), Hong-jun GAO (高鸿钧). Understanding formation of molecular rotor array on Au(111) surface[J]. Front Phys Chin, 2010, 5(4): 380-386.
[14] Qin LIU (刘琴), Ke-dong WANG (王克东), Xu-dong XIAO (肖旭东). Surface dynamics studied by time-dependent tunneling current[J]. Front Phys Chin, 2010, 5(4): 357-368.
[15] Karl-Heinz ERNST. Intermediate structures in two-dimensional molecular self-assembly[J]. Front Phys Chin, 2010, 5(4): 340-346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed