Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (4) : 110309-110309    https://doi.org/10.1007/s11467-016-0570-9
Review article
Stochastic description of quantum Brownian dynamics
Yun-An Yan1,*(),Jiushu Shao2,*()
1. Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guizhou 550018, China
2. Center of Advanced Quantum Studies and College of Chemistry, Beijing Normal University, Beijing 100875, China
 Download: PDF(2876 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or It? calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems such as the dynamical description of quantum phase transition (localization) and the numerical stability of the trace-conserving, nonlinear stochastic Liouville equation are outlined.

Keywords stochastic description      quantum dissipation      spin-boson model      hierarchical approach     
Corresponding Author(s): Yun-An Yan,Jiushu Shao   
Issue Date: 04 May 2016
 Cite this article:   
Yun-An Yan,Jiushu Shao. Stochastic description of quantum Brownian dynamics[J]. Front. Phys. , 2016, 11(4): 110309-110309.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0570-9
https://academic.hep.com.cn/fop/EN/Y2016/V11/I4/110309
1 R. E. Bellman, Dynamic Programming, Princeton: Princeton University Press, 1957
2 H. J. Berendsen, Simulating the Physical World: Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics, Cambridge: Cambridge University Press, 2007
https://doi.org/10.1017/CBO9780511815348
3 A. O. Caldeira, An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation, Cambridge: Cambridge University Press, 2014
https://doi.org/10.1017/CBO9781139035439
4 S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15(1), 1 (1943)
https://doi.org/10.1103/RevModPhys.15.1
5 S. Dattagupta, Relaxation Phenomena in Condensed Matter Physics, Orlando: Academic Press, 2012
6 B. J. Berne, G. Cicootti, and D. F. Coker (<Eds/>.), Classical and Quantum Dynamics in Condensed Phase Simulations, Computer Simulation of Rare Events and the Dynamics of Classical and Quantum Condensed-Phase Systems, Singapore: World Scientific, 1998
https://doi.org/10.1142/3816
7 W. Ji, H. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9(6), 671 (2014)
https://doi.org/10.1007/s11467-014-0458-5
8 A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys. 322(8), 549 (1905)
https://doi.org/10.1002/andp.19053220806
9 M. von Smoluchowski, Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen, Ann. Phys. 326(14), 756 (1906)
https://doi.org/10.1002/andp.19063261405
10 M. Scott, Applied Stochastic Processes in Science and Engineering, Waterloo: University of Waterloo, 2013
11 C. Gardiner, Handbook of Stochastic Methods, 3rd Ed., Berlin: Springer, 2004
https://doi.org/10.1007/978-3-662-05389-8
12 N. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd Ed., Amsterdam: Elsevier, 2007
13 J. B. Johnson, Thermal agitation of electricity in conductors, Phys. Rev. 32(1), 97 (1928)
https://doi.org/10.1103/PhysRev.32.97
14 H. Nyquist, Thermal agitation of electric charge in conductors, Phys. Rev. 32(1), 110 (1928)
https://doi.org/10.1103/PhysRev.32.110
15 P. Langevin, On the theory of Brownian motion, C. R. Acad. Sci. (Paris) 146, 530 (1908)
16 D. S. Lemons and A. Gythiel, Paul Langevin’s 1908 paper “On the theory of Brownian motion” [“Sur la théorie du mouvement brownien”, C. R. Acad. Sci. (Paris) 146, 530–533 (1908)], Am. J. Phys. 65(11), 1079 (1997)
https://doi.org/10.1119/1.18725
17 A. D. Fokker, Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld, Ann. Phys. 348(5), 810 (1914)
https://doi.org/10.1002/andp.19143480507
18 M. Planck, Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie, Sitz. König. Preuß. Akad. Wiss. 1, 324 (1917)
19 A. Kolmogoroff, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Mathematische Annalen, 104(1), 415 (1931)
https://doi.org/10.1007/BF01457949
20 H. Risken, Fokker-Planck Equation, Springer Series in Synergetics, Berlin: Springer, 1984
https://doi.org/10.1007/978-3-642-96807-5
21 G. E. Uhlenbeck and L. S. Ornstein, On the theory of the Brownian motion, Phys. Rev. 36(5), 823 (1930)
https://doi.org/10.1103/PhysRev.36.823
22 H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7(4), 284 (1940)
https://doi.org/10.1016/S0031-8914(40)90098-2
23 P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory: Fifty years after Kramers, Rev. Mod. Phys. 62(2), 251 (1990)
https://doi.org/10.1103/RevModPhys.62.251
24 R. Kubo, A stochastic theory of line shape, Adv. Chem. Phys. 15, 101 (1969)
https://doi.org/10.1002/9780470143605.ch6
25 H. B. Callen and T. A. Welton, Irreversibility and generalized noise, Phys. Rev. 83(1), 34 (1951)
https://doi.org/10.1103/PhysRev.83.34
26 R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29(1), 255 (1966)
https://doi.org/10.1088/0034-4885/29/1/306
27 S. Nakajima, On quantum theory of transport phenomena, Prog. Theor. Phys. 20(6), 948 (1958)
https://doi.org/10.1143/PTP.20.948
28 R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys. 33(5), 1338 (1960)
https://doi.org/10.1063/1.1731409
29 G. W. Ford, J. T. Lewis, and R. F. O’Connell, Quantum Langevin equation, Phys. Rev. A 37(11), 4419 (1988)
https://doi.org/10.1103/PhysRevA.37.4419
30 M. C. Wang and G. E. Uhlenbeck, On the theory of the Brownian motion (II), Rev. Mod. Phys. 17(2-3), 323 (1945)
https://doi.org/10.1103/RevModPhys.17.323
31 H.P. Breuer and F. Petruccione, Theory of Open Quantum Systems, Oxford: Oxford University Press, 2002
32 A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59(1), 1 (1987)
https://doi.org/10.1103/RevModPhys.59.1
33 P. Hänggi and G. Ingold, Fundamental aspects of quantum Brownian motion, Chaos 15, 026105 (2005)
https://doi.org/10.1063/1.1853631
34 U. Weiss, Quantum Dissipative Systems, Volume 13 of Series in Modern Condensed Matter Physics, 3rd Ed., Singapore: World Scientific, 2008
35 A. Caldeira and A. Leggett, Quantum tunnelling in a dissipative system, Ann. Phys. 149(2), 374 (1983)
https://doi.org/10.1016/0003-4916(83)90202-6
36 R. Feynman and F. L. Jr. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963)
https://doi.org/10.1016/0003-4916(63)90068-X
37 J. Cao, L. W. Ungar, and G. A. Voth, A novel method for simulating quantum dissipative systems, J. Chem. Phys. 104(11), 4189 (1996)
https://doi.org/10.1063/1.471230
38 J. T. Stockburger and C. H. Mak, Dynamical simulation of current fluctuations in a dissipative two-state system, Phys. Rev. Lett. 80(12), 2657 (1998)
https://doi.org/10.1103/PhysRevLett.80.2657
39 J. T. Stockburger and H. Grabert, Exact c-number representation of non-Markovian quantum dissipation, Phys. Rev. Lett. 88(17), 170407 (2002)
https://doi.org/10.1103/PhysRevLett.88.170407
40 W. Koch, F. Großmann, J. T. Stockburger, and J. Ankerhold, Non-Markovian dissipative semiclassical dynamics, Phys. Rev. Lett. 100(23), 230402 (2008)
https://doi.org/10.1103/PhysRevLett.100.230402
41 L. Diósi and W. T. Strunz, The non-Markovian stochastic Schrö dinger equation for open systems, Phys. Lett. A 235(6), 569 (1997)
https://doi.org/10.1016/S0375-9601(97)00717-2
42 L. Diósi, N. Gisin, and W. T. Strunz, Non-Markovian quantum state diffusion, Phys. Rev. A 58(3), 1699 (1998)
https://doi.org/10.1103/PhysRevA.58.1699
43 W. T. Strunz, L. Diósi, and N. Gisin, Open system dynamics with non-Markovian quantum trajectories, Phys. Rev. Lett. 82(9), 1801 (1999)
https://doi.org/10.1103/PhysRevLett.82.1801
44 W. T. Strunz, L. Diósi, N. Gisin, and T. Yu, Quantum trajectories for Brownian motion, Phys. Rev. Lett. 83(24), 4909 (1999)
https://doi.org/10.1103/PhysRevLett.83.4909
45 T. Yu, Non-Markovian quantum trajectories versus master equations: Finite-temperature heat bath, Phys. Rev. A 69(6), 062107 (2004)
https://doi.org/10.1103/PhysRevA.69.062107
46 X. Zhao, J. Jing, B. Corn, and T. Yu, Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach, Phys. Rev. A 84(3), 032101 (2011)
https://doi.org/10.1103/PhysRevA.84.032101
47 H. Breuer, Exact quantum jump approach to open systems in bosonic and spin baths, Phys. Rev. A 69(2), 022115 (2004)
https://doi.org/10.1103/PhysRevA.69.022115
48 E. Calzetta, A. Roura, and E. Verdaguer, Stochastic description for open quantum systems, Physica A 319, 188 (2003)
https://doi.org/10.1016/S0378-4371(02)01521-2
49 J. Shao, Decoupling quantum dissipation interaction via stochastic fields, J. Chem. Phys. 120(11), 5053 (2004)
https://doi.org/10.1063/1.1647528
50 J. T. Stockburger and H. Grabert, Non-Markovian quantum state diffusion, Chem. Phys. 268(1-3), 249 (2001)
https://doi.org/10.1016/S0301-0104(01)00307-X
51 M. Suzuki, Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems, Commun. Math. Phys. 51(2), 183 (1976)
https://doi.org/10.1007/BF01609348
52 D. Gatarek and N. Gisin, Continuous quantum jumps and infinite-dimensional stochastic equations, J. Math. Phys. 32(8), 2152 (1991)
https://doi.org/10.1063/1.529188
53 A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121(3), 587 (1983)
https://doi.org/10.1016/0378-4371(83)90013-4
54 W. H. Louisell, Quantum Statistical Properties of Radiation, New York: Wiley, 1973
55 W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math. 7(4), 649 (1954)
https://doi.org/10.1002/cpa.3160070404
56 D. Finkelstein, On relations between commutators, Commun. Pure Appl. Math. 8(2), 245 (1955)
https://doi.org/10.1002/cpa.3160080204
57 E. H. Wichmann, Note on the algebraic aspect of the integration of a system of ordinary linear differential equations, J. Math. Phys. 2(6), 876 (1961)
https://doi.org/10.1063/1.1724235
58 G. H. Weiss and A. A. Maradudin, The Baker-Hausdorff formula and a problem in crystal physics, J. Math. Phys. 3(4), 771 (1962)
https://doi.org/10.1063/1.1724280
59 A. Murua, The Hopf algebra of rooted trees, free Lie algebras, and Lie series, Found. Comput. Math. 6(4), 387 (2006)
https://doi.org/10.1007/s10208-003-0111-0
60 Y. A. Yan and Y. Zhou, Hermitian non-Markovian stochastic master equations for quantum dissipative dynamics, Phys. Rev. A 92(2), 022121 (2015)
https://doi.org/10.1103/PhysRevA.92.022121
61 J. Shao, Rigorous representation and exact simulation of real Gaussian stationary processes, Chem. Phys. 375(2-3), 378 (2010)
https://doi.org/10.1016/j.chemphys.2010.06.027
62 R. B. Davies and D. S. Harte, Tests for Hurst effect, Biometrika 74(1), 95 (1987)
https://doi.org/10.1093/biomet/74.1.95
63 A. T. A. Wood and G. Chan, Simulation of stationary Gaussian processes in [0,1]d, J. Comput. Graph. Stat. 3(4), 409 (1994)
https://doi.org/10.2307/1390903
64 G. Chan and A. Wood, Algorithm AS312: An algorithm for simulating stationary Gaussian random fields, Appl. Stat. 46(1), 171 (1997)
https://doi.org/10.1111/1467-9876.00057
65 G. Chan and A. T. A. Wood, Simulation of stationary Gaussian vector fields, Stat. Comput. 9(4), 265 (1999)
https://doi.org/10.1023/A:1008903804954
66 C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, On the measurement of a weak classical force coupled to a quantum-mechanical oscillator (I): Issues of principle, Rev. Mod. Phys. 52(2), 341 (1980)
https://doi.org/10.1103/RevModPhys.52.341
67 D. Mozyrsky and V. Privman, Measurement of a quantum system coupled to independent heat-bath and pointer modes, Mod. Phys. Lett. B 14(09), 303 (2000)
https://doi.org/10.1142/S0217984900000409
68 J. Shao, M. L. Ge, and H. Cheng, Decoherence of quantum-nondemolition systems, Phys. Rev. E 53(1), 1243 (1996)
pmid: 9964365
69 P. Schramm and H. Grabert, Effect of dissipation on squeezed quantum fluctuations, Phys. Rev. A 34(5), 4515 (1986)
pmid: 9897826
70 P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 2nd Ed., Berlin: Springer-Verlag, 1995
71 V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, 3rd Ed., Weinheim: Wiley-VCH, 2010
72 M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
73 R. Schatten, Norm Ideals of Completely Continuous Operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft27, Berlin-Göttingen-Heidelberg: Springer-Verlag, 1960
https://doi.org/10.1007/978-3-642-87652-3
74 H. P. Breuer, E. M. Laine, and J. Piilo, Measure for the degree of non-markovian behavior of quantum processes in open systems, Phys. Rev. Lett. 103(21), 210401 (2009)
pmid: 20366019
75 Á. Rivas, S. F. Huelga, and M. B. Plenio, Quantum non-Markovianity: Characterization, quantification and detection, Rep. Prog. Phys. 77(9), 094001 (2014)
pmid: 25147025
76 A. Brissaud and U. Frisch, Solving linear stochastic differential equations, J. Math. Phys. 15(5), 524 (1974)
https://doi.org/10.1063/1.1666678
77 V. I. Klyatskin, Dynamics of Stochastic Systems, Amsterdam: Elsevier Science, 2005
78 M. Ban, S. Kitajima, and F. Shibata, Reduced dynamics and the master equation of open quantum systems, Phys. Lett. A 374(23), 2324 (2010)
https://doi.org/10.1016/j.physleta.2010.03.066
79 E. Novikov, Functionals and the Random-force Method in Turbulence Theory, Sov. Phys. JETP 20(5), 1290 (1965)
80 J. Cao, A phase-space study of Bloch–Redfield theory, J. Chem. Phys. 107(8), 3204 (1997)
https://doi.org/10.1063/1.474670
81 C. Fleming, A. Roura, and B. Hu, Exact analytical solutions to the master equation of quantum Brownian motion for a general environment, Ann. Phys. 326(5), 1207 (2011)
https://doi.org/10.1016/j.aop.2010.12.003
82 H. Dekker, Quantization of the linearly damped harmonic oscillator, Phys. Rev. A 16(5), 2126 (1977)
https://doi.org/10.1103/PhysRevA.16.2126
83 H. Dekker, Classical and quantum mechanics of the damped harmonic oscillator, Phys. Rep. 80(1), 1 (1981)
https://doi.org/10.1016/0370-1573(81)90033-8
84 F. Haake and R. Reibold, Strong damping and low-temperature anomalies for the harmonic oscillator, Phys. Rev. A 32(4), 2462 (1985)
pmid: 9896361
85 H. Grabert, P. Schramm, and G. L. Ingold, Quantum Brownian motion: The functional integral approach, Phys. Rep. 168(3), 115 (1988)
https://doi.org/10.1016/0370-1573(88)90023-3
86 W. G. Unruh and W. H. Zurek, Reduction of a wave packet in quantum Brownian motion, Phys. Rev. D 40(4), 1071 (1989)
pmid: 10011915
87 V. Ambegaokar, Dissipation and decoherence in a quantum oscillator, J. Stat. Phys. 125(5-6), 1183 (2006)
https://doi.org/10.1007/s10955-005-8018-6
88 B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise, Phys. Rev. D 45(8), 2843 (1992)
pmid: 10014675
89 B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian motion in a general environment (II): Nonlinear coupling and perturbative approach, Phys. Rev. D 47(4), 1576 (1993)
pmid: 10015735
90 J. J. Halliwell and T. Yu, Alternative derivation of the Hu–Paz–Zhang master equation of quantum Brownian motion, Phys. Rev. D 53(4), 2012 (1996)
pmid: 10020193
91 R. Karrlein and H. Grabert, Exact time evolution and master equations for the damped harmonic oscillator, Phys. Rev. E 55(1), 153 (1997)
https://doi.org/10.1103/PhysRevE.55.153
92 G. W. Ford and R. F. O'Connell, Exact solution of the Hu–Paz–Zhang master equation, Phys. Rev. D 64(10), 105020 (2001)
https://doi.org/10.1103/PhysRevD.64.105020
93 E. Calzetta, A. Roura, and E. Verdaguer, Master equation for quantum Brownian motion derived by stochastic methods, Int. J. Theor. Phys. 40(12), 2317 (2001)
https://doi.org/10.1023/A:1012946523088
94 W. T. Strunz and T. Yu, Convolutionless non-Markovian master equations and quantum trajectories: Brownian motion, Phys. Rev. A 69(5), 052115 (2004)
https://doi.org/10.1103/PhysRevA.69.052115
95 C. H. Chou, T. Yu, and B. L. Hu, Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment, Phys. Rev. E 77(1 Pt 1), 011112 (2008)
pmid: 18351823
96 C. Chou, B. Hu, and T. Yu, Quantum Brownian motion of a macroscopic object in a general environment, Physica A 387(2-3), 432 (2008)
https://doi.org/10.1016/j.physa.2007.09.025
97 R. Xu, B. Tian, J. Xu, and Y. Yan, Exact dynamics of driven Brownian oscillators, J. Chem. Phys. 130, 074107 (2009) 
https://doi.org/10.1063/1.3078024
98 P. S. Riseborough, P. Hanggi, and U. Weiss, Exact results for a damped quantum-mechanical harmonic oscillator, Phys. Rev. A 31(1), 471 (1985)
pmid: 9895497
99 S. Kohler, T. Dittrich, and P. Hänggi, Floquet-Markovian description of the parametrically driven, dissipative harmonic quantum oscillator, Phys. Rev. E 55(1), 300 (1997)
https://doi.org/10.1103/PhysRevE.55.300
100 C. Zerbe and P. Hänggi, Brownian parametric quantum oscillator with dissipation, Phys. Rev. E 52(2), 1533 (1995)
pmid: 9963574
101 H. Li, J. Shao, and S. Wang, Derivation of exact master equation with stochastic description: Dissipative harmonic oscillator, Phys. Rev. E 84(5 Pt 1), 051112 (2011)
pmid: 22181374
102 J. T. Stockburger, Simulating spin-boson dynamics with stochastic Liouville–von Neumann equations, Chem. Phys. 296(2-3), 159 (2004)
https://doi.org/10.1016/j.chemphys.2003.09.014
103 C. Meier and D. J. Tannor, Non-Markovian evolution of the density operator in the presence of strong laser fields, J. Chem. Phys. 111(8), 3365 (1999)
https://doi.org/10.1063/1.479669
104 C. Kreisbeck and T. Kramer, Long-lived electronic coherence in dissipative exciton dynamics of light-harvesting complexes, J. Phys. Chem. Lett. 3(19), 2828 (2012)
https://doi.org/10.1021/jz3012029
105 V. Shapiro and V. Loginov, “Formulae of differentiation” and their use for solving stochastic equations, Physica A 91(3-4), 563 (1978)
https://doi.org/10.1016/0378-4371(78)90198-X
106 Y. Tanimura and R. Kubo, Time evolution of a quantum system in contact with a nearly Gaussian–Markoffian noise bath, J. Phys. Soc. Jpn. 58(1), 101 (1989)
https://doi.org/10.1143/JPSJ.58.101
107 Y. Tanimura, Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath, Phys. Rev. A 41(12), 6676 (1990)
pmid: 9903081
108 Y. Zhou, Y. Yan, and J. Shao, Stochastic simulation of quantum dissipative dynamics, Europhys. Lett. 72(3), 334 (2005)
https://doi.org/10.1209/epl/i2005-10262-4
109 Z. Tang, X. Ouyang, Z. Gong, H. Wang, and J. Wu, Extended hierarchy equation of motion for the spin-boson model, J. Chem. Phys. 143, 224112 (2015) 
https://doi.org/10.1063/1.4936924
110 J. Jin, X. Zheng, and Y. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys. 128(23), 234703 (2008)
pmid: 18570515
111 Q. Shi, L. Chen, G. Nan, R. X. Xu, and Y. Yan, Efficient hierarchical Liouville space propagator to quantum dissipative dynamics, J. Chem. Phys. 130(8), 084105 (2009)
pmid: 19256595
112 J. Hu, R. X. Xu, and Y. Yan, Communication: Padé spectrum decomposition of Fermi function and Bose function, J. Chem. Phys. 133(10), 101106 (2010)
pmid: 20849157
113 K. B. Zhu, R. X. Xu, H. Y. Zhang, J. Hu, and Y. J. Yan, Hierarchical dynamics of correlated system-environment coherence and optical spectroscopy, J. Phys. Chem. B 115(18), 5678 (2011)
pmid: 21452824
114 D. Alonso and I. de Vega, Hierarchy of equations of multiple-time correlation functions, Phys. Rev. A 75(5), 052108 (2007)
https://doi.org/10.1103/PhysRevA.75.052108
115 M. Sarovar and M. D. Grace, Reduced equations of motion for quantum systems driven by diffusive Markov processes, Phys. Rev. Lett. 109(13), 130401 (2012)
pmid: 23030069
116 I. Vega, On the structure of the master equation for a two-level system coupled to a thermal bath, J. Phys. A Math. Theor. 48(14), 145202 (2015)
https://doi.org/10.1088/1751-8113/48/14/145202
117 Z. Zhou, M. Chen, T. Yu, and J. Q. You, Quantum Langevin approach for non-Markovian quantum dynamics of the spin-boson model, Phys. Rev. A 93(2), 022105 (2016)
https://doi.org/10.1103/PhysRevA.93.022105
118 A. Ishizaki and G. R. Fleming, Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature, Proc. Natl. Acad. Sci. USA 106(41), 17255 (2009)
pmid: 19815512
119 Y. A. Yan and O. Kühn, Laser control of dissipative two-exciton dynamics in molecular aggregates, New J. Phys. 14(10), 105004 (2012)
https://doi.org/10.1088/1367-2630/14/10/105004
120 Y. A. Yan and S. Cai, Exciton Seebeck effect in molecular systems, J. Chem. Phys. 141(5), 054105 (2014)
pmid: 25106568
121 Y. Yan, Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems, J. Chem. Phys. 144, 024305 (2016) 
https://doi.org/10.1063/1.4939523
122 L. Chen, R. Zheng, Q. Shi, and Y. Yan, Two-dimensional electronic spectra from the hierarchical equations of motion method: Application to model dimers, J. Chem. Phys. 132(2), 024505 (2010)
pmid: 20095685
123 X. Zheng, Y. Yan, and M. Di Ventra, Kondo memory in driven strongly correlated quantum dots, Phys. Rev. Lett. 111(8), 086601 (2013)
pmid: 24010458
124 S. Chakravarty and A. J. Leggett, Dynamics of the two-state system with Ohmic dissipation, Phys. Rev. Lett. 52(1), 5 (1984)
https://doi.org/10.1103/PhysRevLett.52.5
125 Y. Zhouand J.Shao, Solving the spin-boson model of strong dissipation with flexible random-deterministic scheme, J. Chem. Phys. 128(3), 034106 (2008)
pmid: 18205487
126 F. Lesage and H. Saleur, Boundary interaction changing operators and dynamical correlations in quantum impurity problems, Phys. Rev. Lett. 80(20), 4370 (1998)
https://doi.org/10.1103/PhysRevLett.80.4370
127 G. M. Whitesides, Reinventing chemistry, Angew. Chem. Int. Ed. 54(11), 3196 (2015)
https://doi.org/10.1002/anie.201410884
128 H. Primas, Chemistry, Quantum Mechanics and Reductionism: Perspectives in Theoretical Chemistry, Lecture Notes in Chemistry, Berlin: Springer, 1983
https://doi.org/10.1007/978-3-642-69365-6
[1] YiJing Yan,Jinshuang Jin,Rui-Xue Xu,Xiao Zheng. Dissipation equation of motion approach to open quantum systems[J]. Front. Phys. , 2016, 11(4): 110306-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed