Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (1) : 130201    https://doi.org/10.1007/s11467-017-0698-2
RESEARCH ARTICLE
Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs
Li-Min Ying1, Jie Zhou1, Ming Tang2, Shu-Guang Guan1, Yong Zou1()
1. Department of Physics, East China Normal University, Shanghai 200062, China
2. School of Information Science Technology, East China Normal University, Shanghai 200241, China
 Download: PDF(1280 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.

Keywords fixation time distribution      complex networks      coordination game     
Corresponding Author(s): Yong Zou   
Issue Date: 28 August 2017
 Cite this article:   
Li-Min Ying,Jie Zhou,Ming Tang, et al. Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs[J]. Front. Phys. , 2018, 13(1): 130201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0698-2
https://academic.hep.com.cn/fop/EN/Y2018/V13/I1/130201
1 J. M.Smith, Evolution and the Theory of Games, Cambridge: Cambridge University Press, 1982
https://doi.org/10.1017/CBO9780511806292
2 J.Hofbauerand K.Sigmund, Evolutionary Games and Population Dynamics, Cambridge: Cambridge University Press, 1998
https://doi.org/10.1017/CBO9781139173179
3 M. A.Nowakand R. M.May, Evolutionary games and spatial chaos, Nature359(6398), 826 (1992)
https://doi.org/10.1038/359826a0
4 M. A.Nowak,A.Sasaki, C.Taylor, and D.Fudenberg, Emergence of cooperation and evolutionary stability in finite populations, Nature428(6983), 646(2004)
https://doi.org/10.1038/nature02414
5 E.Lieberman, C.Hauert, and M. A.Nowak, Evolutionary dynamics on graphs, Nature433(7023), 312(2005)
https://doi.org/10.1038/nature03204
6 B.Ottino-Loffler, J. G.Scott, and S. H.Strogatz, Takeover times for a simple model of network infection,
7 M. A.Nowak, Five rules for the evolution of cooperation, Science314(5805), 1560(2006)
https://doi.org/10.1126/science.1133755
8 G.Szabóand G.Fáth, Evolutionary games on graphs, Phys. Rep. 446(4–6), 97(2007)
https://doi.org/10.1016/j.physrep.2007.04.004
9 A.Arenas, A.Díaz-Guilera, J.Kurths, Y.Moreno, and C. S.Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93(2008)
https://doi.org/10.1016/j.physrep.2008.09.002
10 C.Taylor, D.Fudenberg, A.Sasaki, and M. A.Nowak, Evolutionary game dynamics in finite populations, Bull. Math. Biol. 66(6), 1621(2004)
https://doi.org/10.1016/j.bulm.2004.03.004
11 A.TraulsenandC.Hauert, Stochastic evolutionary game dynamics, in: H.-G. Schuster (Ed.), Reviews of Nonlinear Dynamics and Complexity, Vol. 2, Wiley-VCH Verlag GmbH & Co. KGaA, 2009, pp 25–61
12 N.van Kampen, Stochastic Processes in Physics and Chemistry, 3rd Ed., Amsterdam: Elsevier, 2007
13 T.Antaland I.Scheuring, Fixation of strategies for an evolutionary game in finite populations, Bull. Math. Biol. 68(8), 1923(2006)
https://doi.org/10.1007/s11538-006-9061-4
14 D.Zhouand H.Qian, Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics, Phys. Rev. E84(3), 031907(2011)
https://doi.org/10.1103/PhysRevE.84.031907
15 T.Galla, Imitation, internal absorption and the reversal of local drift in stochastic evolutionary games, J. Theor. Biol. 269(1), 46(2011)
https://doi.org/10.1016/j.jtbi.2010.09.035
16 A.Traulsen, J. C.Claussen, andC.Hauert, Coevolutionary dynamics: From finite to infinite populations, Phys. Rev. Lett. 95(23), 238701(2005)
https://doi.org/10.1103/PhysRevLett.95.238701
17 A.Traulsen, M.Nowak, and J.Pacheco, Stochastic dynamics of invasion and fixation, Phys. Rev. E74(1), 011909(2006)
https://doi.org/10.1103/PhysRevE.74.011909
18 M.Mobilia, Stochastic dynamics of the prisoner’s dilemma with cooperation facilitators, Phys. Rev. E86(1), 011134(2012)
https://doi.org/10.1103/PhysRevE.86.011134
19 L. Y.Zhang, Y.Zou, S. G.Guan, and Z. H.Liu, Analytical description for the critical fixations of evolutionary coordination games on finite complex structured populations, Phys. Rev. E91(4), 042807(2015)
https://doi.org/10.1103/PhysRevE.91.042807
20 M.Assafand M.Mobilia, Large fluctuations and fixation in evolutionary games, J. Stat. Mech.: Theory and Experiment2010(09), P09009(2010)
https://doi.org/10.1088/1742-5468/2010/09/P09009
21 M.Assaf, M.Mobilia, and E.Roberts, Cooperation dilemma in finite populations under fluctuating environments, Phys. Rev. Lett. 111(23), 238101(2013)
https://doi.org/10.1103/PhysRevLett.111.238101
22 A. J.Black,A.Traulsen, and T.Galla, Mixing times in evolutionary game dynamics, Phys. Rev. Lett.109(2), 028101(2012)
https://doi.org/10.1103/PhysRevLett.109.028101
23 A.Traulsen, J. C.Claussen, and C.Hauert, Stochastic differential equations for evolutionary dynamics with demographic noise and mutations, Phys. Rev. E85(4), 041901(2012)
https://doi.org/10.1103/PhysRevE.85.041901
24 T.Antal, S.Redner, and V.Sood, Evolutionary dynamics on degree-heterogeneous graphs, Phys. Rev. Lett. 96(18), 188104(2006)
https://doi.org/10.1103/PhysRevLett.96.188104
25 K.Hashimotoand K.Aihara, Fixation probabilities in evolutionary game dynamics with a two-strategy game in finite diploid populations, J. Theor. Biol. 258(4), 637(2009)
https://doi.org/10.1016/j.jtbi.2009.02.004
26 K. H. Z.So, H.Ohtsuki, andT.Kato, Spatial effect on stochastic dynamics of bistable evolutionary games, J. Stat. Mech.: Theory and Experiment2014(10), P10020(2014)
https://doi.org/10.1088/1742-5468/2014/10/P10020
27 P. MAltrockand A.Traulsen, Fixation times in evolutionary games under weak selection, New J. Phys. 11(1), 013012(2009)
https://doi.org/10.1088/1367-2630/11/1/013012
28 T. G.Mattos, C.Mejía-Monasterio, R.Metzler, and G.Oshanin, First passages in bounded domains: When is the mean first passage time meaningful? Phys. Rev. E86(3), 031143(2012)
https://doi.org/10.1103/PhysRevE.86.031143
29 P.Ashcroft, A.Traulsen, and T.Galla, When the mean is not enough: Calculating fixation time distributions in birth-death processes, Phys. Rev. E92(4), 042154(2015)
https://doi.org/10.1103/PhysRevE.92.042154
30 Y.Zou, T.Pereira, M.Small, Z. H.Liu, and J.Kurths, Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett. 112(11), 114102(2014)
https://doi.org/10.1103/PhysRevLett.112.114102
31 S. F.Ma, H. J.Bi, Y.Zou, Z. H.Liu, and S. G.Guan, Shuttle-run synchronization in mobile ad hoc networks, Front. Phys. 10(3), 343(2015)
https://doi.org/10.1007/s11467-015-0475-z
32 X.Huang, J.Gao, Y. T.Sun, Z. G.Zheng, and C.Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504(2016)
https://doi.org/10.1007/s11467-016-0597-y
33 C. Q.Wang, A.Pumir, N. B.Garnier, and Z. H.Liu, Explosive synchronization enhances selectivity: Example of the cochlea, Front. Phys. 12(5), 128901(2017)
https://doi.org/10.1007/s11467-016-0634-x
34 H. B.Chen, Y. T.Sun, J.Gao, C.Xu, and Z. G.Zheng, Order parameter analysis of synchronization transitions on star networks, Front. Phys. 12(6), 120504(2017)
https://doi.org/10.1007/s11467-017-0651-4
35 J.Zhang, Y. Z.Yu, and X. G.Wang, Synchronization of coupled metronomes on two layers, Front. Phys. 12(6), 120508(2017)
https://doi.org/10.1007/s11467-017-0675-9
36 G.Szabóand C.Töke, Evolutionary prisoner’s dilemma game on a square lattice, Phys. Rev. E58(1), 69(1998)
https://doi.org/10.1103/PhysRevE.58.69
37 P. P.Li, J. H.Ke, Z. Q.Lin, and P. M.Hui, Cooperative behavior in evolutionary snowdrift games with the unconditional imitation rule on regular lattices, Phys. Rev. E85(2), 021111(2012)
https://doi.org/10.1103/PhysRevE.85.021111
38 L. Y.Zhang, L. M.Ying, J.Zhou, S. G.Guan, and Y.Zou, Fixation probabilities of evolutionary coordination games on two coupled populations, Phys. Rev. E94(3), 032307(2016)
https://doi.org/10.1103/PhysRevE.94.032307
[1] Heng Guo, Jia-Yang Zhang, Yong Zou, Shu-Guang Guan. Cross and joint ordinal partition transition networks for multivariate time series analysis[J]. Front. Phys. , 2018, 13(5): 130508-.
[2] Yi-Min Ding, Jun Meng, Jing-Fang Fan, Fang-Fu Ye, Xiao-Song Chen. Statistical properties of random clique networks[J]. Front. Phys. , 2017, 12(5): 128909-.
[3] YANG Kong-qing, YANG Lei, GONG Bai-hua, LIN Zhong-cai, HE Hong-sheng, HUANG Liang. Geographical networks: geographical effects on network properties[J]. Front. Phys. , 2008, 3(1): 105-111.
[4] ZHAO Ming, ZHOU Tao, CHEN Guan-rong, WANG Bing-hong. Enhancing the network synchronizability[J]. Front. Phys. , 2007, 2(4): 460-468.
[5] LIU Cui-mei, LI Jun-wei. Small- world and the growing properties of the Chinese railway network[J]. Front. Phys. , 2007, 2(3): 364-367.
[6] ZHENG Zhi-gang, FENG Xiao-qin, AO Bin, Michael C. Cross. Synchronization on coupled dynamical networks[J]. Front. Phys. , 2006, 1(4): 458-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed