|
|
Structural properties of water confined by phospholipid membranes |
Fausto Martelli1( ), Hsin-Yu Ko1, Carles Calero Borallo2,3, Giancarlo Franzese2,3( ) |
1. Department of Chemistry, Princeton University, Princeton, NJ 08544, USA 2. Secció de Física Estadística i Interdisciplinària–Departament de Física de la Matèria Condensada, Facultat de Física Universitat de Barcelona, Mart i Franqus 1, 08028 Barcelona, Spain 3. Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Joan XXIII S/N, 08028 Barcelona, Spain |
|
|
Abstract Biological membranes are essential for cell life and hydration. Water provides the driving force for the assembly and stability of many cell components. Here, we study the structural properties of water in a phospholipid membrane. We characterize the local structures, inspecting the intermediate range order (IRO) and adopting a sensitive local order metric recently proposed by Martelli et al. that measures and grades the degree of overlap of the local environment with the structures of perfect ice. Close to the membrane, water acquires a high IRO and changes its dynamical properties; i.e., its translational and rotational degrees of freedom slow in a region that extends over ≃ 1 nm from the membrane interface. Surprisingly, we show that at distances as far as ≃ 2:5 nm from the interface, although the bulk-like dynamics are recovered, the IRO of water is still slightly higher than that in the bulk under the same thermodynamic conditions. Therefore, the water-membrane interface has a structural effect at ambient conditions that propagates further than the often-invoked 1-nm length scale. Consequently, this should be considered when analyzing experimental data of water confined by membranes and could help us to understand the role of water in biological systems.
|
Keywords
confined water
dimyristoylphosphatidylcholines
DMPC
order parameter
|
Corresponding Author(s):
Fausto Martelli,Giancarlo Franzese
|
Issue Date: 07 September 2017
|
|
1 |
I. W.Hamley, Introduction to Soft Matter, John Wiley and Sons, West Sussex, England, 2007
|
2 |
J.Fitter, R. E.Lechner, and N. A.Dencher, Interactions of hydration water and biological membranes studied by neutron scattering, J. Phys. Chem. B103(38), 8036 (1999)
https://doi.org/10.1021/jp9912410
|
3 |
M.Trapp, T.Gutberlet, F.Juranyi,T.Unruh, B.Demé, M.Tehei, and J.Peters, Hydration dependent studies of highly aligned multilayer lipid membranes by neutron scattering, J. Chem. Phys. 133(16), 164505(2010)
https://doi.org/10.1063/1.3495973
|
4 |
S. R.Wassall, Pulsed field gradient-spin echo NMR studies of water diffusion in a phospholipid model membrane, Biophys. J. 71(5), 2724(1996)
https://doi.org/10.1016/S0006-3495(96)79463-8
|
5 |
V. V.Volkov, D. J.Palmer, and R.Righini, Distinct water species confined at the interface of a phospholipid membrane, Phys. Rev. Lett. 99(7), 078302(2007)
https://doi.org/10.1103/PhysRevLett.99.078302
|
6 |
W.Zhao, D. E.Moilanen, E. E.Fenn, and M. D.Fayer, Water at the surfaces of aligned phospholipid multibilayer model membranes probed with ultrafast vibrational spectroscopy, J. Am. Chem. Soc. 130(42), 13927(2008)
https://doi.org/10.1021/ja803252y
|
7 |
K. J.Tielrooij, D.Paparo, L.Piatkowski, H. J.Bakker, and M.Bonn, Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy, Biophys. J. 97(9), 2484(2009)
https://doi.org/10.1016/j.bpj.2009.08.024
|
8 |
W.Hua, D.Verreault, and H. C.Allen, Solvation of calciumphosphate headgroup complexes at the dppc/aqueous interface, ChemPhysChem16(18), 3910(2015)
https://doi.org/10.1002/cphc.201500720
|
9 |
T.Róg, K.Murzyn, and M.Pasenkiewicz-Gierula, The dynamics of water at the phospholipid bilayer surface: A molecular dynamics simulation study, Chem. Phys. Lett. 352(5–6), 323(2002)
https://doi.org/10.1016/S0009-2614(02)00002-7
|
10 |
S. Y.Bhideand M. L.Berkowitz, Structure and dynamics of water at the interface with phospholipid bilayers, J. Chem. Phys. 123(22), 224702(2005)
https://doi.org/10.1063/1.2132277
|
11 |
M. L.Berkowitz, D. L.Bostick, and S.Pandit, Aqueous solutions next to phospholipid membrane surfaces: Insights from simulations, Chem. Rev. 106(4), 1527(2006)
https://doi.org/10.1021/cr0403638
|
12 |
Y.von Hansen, S.Gekle, and R. R.Netz, Anomalous anisotropic diffusion dynamics of hydration water at lipid membranes, Phys. Rev. Lett. 111(11), 118103(2013)
https://doi.org/10.1103/PhysRevLett.111.118103
|
13 |
Z.Zhangand M. L.Berkowitz, Orientational dynamics of water in phospholipid bilayers with different hydration levels, J. Phys. Chem. B113(21), 7676(2009)
https://doi.org/10.1021/jp900873d
|
14 |
S. M.Gruenbaumand J. L.Skinner, Vibrational spectroscopy of water in hydrated lipid multi-bilayers (i): Infrared spectra and ultrafast pump-probe observables, J. Chem. Phys. 135(7), 075101(2011)
https://doi.org/10.1063/1.3615717
|
15 |
C.Calero,E. H.Stanley, and G.Franzese, Structural interpretation of the large slowdown of water dynamics at stacked phospholipid membranes for decreasing hydration level: All-atom molecular dynamics, Materials9(5), 319(2016)
https://doi.org/10.3390/ma9050319
|
16 |
F.Martelli, H. Y.Ko, E. C.Oǧuz, and R.Car, A local order metric for condensed phase environments, arXiv: 1609.03123 [physics.comp-ph]
|
17 |
M.De Marzio, G.Camisasca, M. M.Conde, M.Rovere, and P.Gallo, Structural properties and fragile to strong transition in confined water, J. Chem. Phys. 146(8), 084505(2017)
https://doi.org/10.1063/1.4975624
|
18 |
R.Zangiand B. J.Berne, Temperature dependence of dimerization and dewetting of large-scale hydrophobes: A molecular dynamics study, J. Phys. Chem. B112(29), 8634(2008)
https://doi.org/10.1021/jp802135c
|
19 |
J. C.Phillips, R.Braun, W.Wang, J.Gumbart, E.Tajkhorshid, E.Villa, C.Chipot, R. D.Skeel, L.Kalé, and K.Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26(16), 1781(2005)
https://doi.org/10.1002/jcc.20289
|
20 |
J. B.Klauda, R. M.Venable, J. A.Freites, J. W.O’Connor, D. J.Tobias, C.Mondragon-Ramirez, I.Vorobyov, A. D.Jr MacKerell, and R. W.Pastor, Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types, J. Phys. Chem. B114(23), 7830(2010)
https://doi.org/10.1021/jp101759q
|
21 |
J. B.Lim, B.Rogaski, and J. B.Klauda, Update of the cholesterol force field parameters in CHARMM, J. Phys. Chem. B116(1), 203(2012)
https://doi.org/10.1021/jp207925m
|
22 |
W. L.Jorgensen, J.Chandrasekhar, J. D.Madura, R. W.Impey, and M. L.Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926(1983)
https://doi.org/10.1063/1.445869
|
23 |
Jr. A. D.MacKerell, D.Bashford, M.Bellott, Jr. R. L.Dunbrack, J. D.Evanseck, et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B102(18), 3586(1998)
|
24 |
U.Essmann, L.Perera, M. L.Berkowitz, T.Darden, H.Lee, and L. G.Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103(19), 8577(1995)
https://doi.org/10.1063/1.470117
|
25 |
H. J. C.Berendsen, J. P. M.Postma, W. F.van Gunsteren, A.DiNola, and J. R.Haak, Molecular dynamics with coupling to an external bath, J. Phys. Chem. 81(8), 3684(1984)
https://doi.org/10.1063/1.448118
|
26 |
S. E.Feller, Y.Zhang, R. W.Pastor, and B. R.Brooks, Constant pressure molecular dynamics simulation: The Langevin piston method, J. Phys. Chem. 103(11), 4613(1995)
https://doi.org/10.1063/1.470648
|
27 |
R. C.Read and J. R.Wilson, An Atlas of Graphs, Oxford University Press, 2016
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|