Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (6) : 120504    https://doi.org/10.1007/s11467-017-0651-4
RESEARCH ARTICLE
Order parameter analysis of synchronization transitions on star networks
Hong-Bin Chen1,2,Yu-Ting Sun3,Jian Gao3,Can Xu3(),Zhi-Gang Zheng1,2()
1. Institute of Systems Science, Huaqiao University, Xiamen 361021, China
2. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
3. Department of Physics and the Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Beijing), Beijing Normal University, Beijing 100875, China
 Download: PDF(1988 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe–Strogatz transformation, Ott–Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.

Keywords Kuramoto model      synchronization      order parameter      Ott–Antonsen ansatz      star network     
Corresponding Author(s): Can Xu,Zhi-Gang Zheng   
Issue Date: 09 February 2017
 Cite this article:   
Hong-Bin Chen,Yu-Ting Sun,Jian Gao, et al. Order parameter analysis of synchronization transitions on star networks[J]. Front. Phys. , 2017, 12(6): 120504.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0651-4
https://academic.hep.com.cn/fop/EN/Y2017/V12/I6/120504
1 Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer Science and Business Media, 2012
2 J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
https://doi.org/10.1103/RevModPhys.77.137
3 S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D 143(1–4), 1 (2000)
https://doi.org/10.1016/S0167-2789(00)00094-4
4 A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2001
https://doi.org/10.1017/CBO9780511755743
5 S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys. 80(4), 1275 (2008)
https://doi.org/10.1103/RevModPhys.80.1275
6 A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
https://doi.org/10.1016/j.physrep.2008.09.002
7 Z. Zheng, G. Hu, and B. Hu, Phase slips and phase synchronization of coupled oscillators, Phys. Rev. Lett. 81(24), 5318 (1998)
https://doi.org/10.1103/PhysRevLett.81.5318
8 Z. Zheng, G. Hu, and B. Hu, Collective phase slips and phase synchronizations in coupled oscillator systems, Phys. Rev. E 62(1), 402 (2000)
https://doi.org/10.1103/PhysRevE.62.402
9 D. A. Paley, N. E. Leonard, and R. Sepulchre, Oscillator models and collective motion: Splay state stabilization of self-propelled particles, in: Proc. 51st IEEE Conf. Decision Control, pp 3935–3940 (2005)
https://doi.org/10.1109/cdc.2005.1582776
10 M. Silber, L. Fabiny, and K. Wiesenfeld, Stability results for in-phase and splay-phase states of solid-state laser arrays, J. Opt. Soc. Am. B 10(6), 1121 (1993)
https://doi.org/10.1364/JOSAB.10.001121
11 S. H. Strogatz and R. E. Mirollo, Splay states in globally coupled Josephson arrays: Analytical prediction of Floquet multipliers, Phys. Rev. E 47(1), 220 (1993)
https://doi.org/10.1103/PhysRevE.47.220
12 L. Lü, C. Li, W. Wang, Y. Sun, Y. Wang, and A. Sun, Study on spatiotemporal chaos synchronization among complex networks with diverse structures, Nonlinear Dyn. 77(1–2), 145 (2014)
https://doi.org/10.1007/s11071-014-1280-x
13 J. Gómez-Gardeñes, S. Gomez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett. 106(12), 128701 (2011)
https://doi.org/10.1103/PhysRevLett.106.128701
14 O. E. Omel’chenko and M. Wolfrum, Nonuniversal transitions to synchrony in the Sakaguchi–Kuramoto model, Phys. Rev. Lett. 109(16), 164101 (2012)
https://doi.org/10.1103/PhysRevLett.109.164101
15 D. Topaj and A. Pikovsky, Reversibility vs. synchronization in oscillator lattices, Physica D 170(2), 118 (2002)
https://doi.org/10.1016/S0167-2789(02)00536-5
16 L. Zhou, C. Wang, Y. Lin, and H. He, Combinatorial synchronization of complex multiple networks with unknown parameters, Nonlinear Dyn. 79(1), 307 (2015)
https://doi.org/10.1007/s11071-014-1665-x
17 X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88, 010802(R) (2013)
18 Z. Zheng, Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems, Beijing: Higher Education Press, 2004 (in Chinese)
19 N. Yao and Z. Zheng, Chimera states in spatiotemporal systems: Theory and applications, Int. J. Mod. Phys. B 30(1), 163002 (2016)
https://doi.org/10.1142/s0217979216300024
20 E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos 18(3), 037113 (2008)
https://doi.org/10.1063/1.2930766
21 S. Watanabe and S. H. Strogatz, Integrability of a globally coupled oscillator array, Phys. Rev. Lett. 70(16), 2391 (1993)
https://doi.org/10.1103/PhysRevLett.70.2391
22 S. Watanabe and S. H. Strogatz, Constants of motion for superconducting Josephson arrays, Physica D 74(3–4), 197 (1994)
https://doi.org/10.1016/0167-2789(94)90196-1
23 J. Gao, C. Xu, Y. Sun, and Z. Zheng, Order parameter analysis for low-dimensional behaviors of coupled phase oscillators, Sci. Rep. 6, 30184 (2016)
https://doi.org/10.1038/srep30184
24 X. Hu, S. Boccaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and C. H. Lai, Exact solution for first-order synchronization transition in a generalized Kuramoto model, Sci. Rep. 4, 7262 (2014)
https://doi.org/10.1038/srep07262
25 I. Leyva, R. Sevilla-Escoboza, J. M. Buldu, I. Sendina-Nadal, J. Gomez-Gardenes, A. Arenas, Y. Moreno, S. Gomez, R. Jaimes-Reategui, and S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett. 108(16), 168702 (2012)
https://doi.org/10.1103/PhysRevLett.108.168702
26 C. Xu, J. Gao, Y. Sun, X. Huang, and Z. Zheng, Explosive or continuous: Incoherent state determines the route to synchronization, Sci. Rep. 5, 12039 (2015)
https://doi.org/10.1038/srep12039
27 P. Li, K. Zhang, X. Xu, J. Zhang, and M. Small, Reexamination of explosive synchronization in scale-free networks: The effect of disassortativity, Phys. Rev. E 87(4), 042803 (2013)
https://doi.org/10.1103/PhysRevE.87.042803
28 T. K. Peron and F. A. Rodrigues, Explosive synchronization enhanced by time-delayed coupling, Phys. Rev. E 86(1), 016102 (2012)
https://doi.org/10.1103/PhysRevE.86.016102
29 P. Ji, T. K. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths, Cluster explosive synchronization in complex networks, Phys. Rev. Lett. 110(21), 218701 (2013)
https://doi.org/10.1103/PhysRevLett.110.218701
30 L. Zhang, J. Chen, B. Sun, Y. Tang, M. Wang, Y. Li, and S. Xue, Nonlinear dynamic evolution and control in a new scale-free networks modeling, Nonlinear Dyn. 76(2), 1569 (2014)
https://doi.org/10.1007/s11071-013-1229-5
31 I. Leyva, A. Navas, I. Sendina-Nadal, J. A. Almendral, J. M. Buldu, M. Zanin, D. Papo, and S. Boccaletti, Explosive transitions to synchronization in networks of phase oscillators, Sci. Rep. 3, 1281 (2013)
https://doi.org/10.1038/srep01281
32 C. Wang, A. Pumir, N. B. Garnier, and Z. Liu, Explosive synchronization enhances selectivity: Example of the cochlea, Front. Phys. 12(5), 128901 (2017)
https://doi.org/10.1007/s11467-016-0634-x
33 A. Bergner, M. Frasca, G. Sciuto, A. Buscarino, E. J. Ngamga, L. Fortuna, and J. Kurths, Remote synchronization in star networks, Phys. Rev. E 85(2), 026208 (2012)
https://doi.org/10.1103/PhysRevE.85.026208
34 O. Burylko, Y. Kazanovich, and R. Borisyuk, Bifurcations in phase oscillator networks with a central element, Physica D 241(12), 1072 (2012)
https://doi.org/10.1016/j.physd.2012.02.020
35 S. J. S. Theesar, M. R. K. Ariffin, and S. Banerjee, Synchronization and a secure communication scheme using optical star network, Opt. Laser Technol. 54, 15 (2013)
https://doi.org/10.1016/j.optlastec.2013.04.022
36 V. Vlasov, A. Pikovsky, and E. E. N. Macau, Star-type oscillatory networks with generic Kuramoto-type coupling: A model for Japanese drums synchrony, Chaos 25(12), 123120 (2015)
https://doi.org/10.1063/1.4938400
37 C. Xu, Y. Sun, J. Gao, T. Qiu, Z. Zheng, and S. Guan, Synchronization of phase oscillators with frequencyweighted coupling, Sci. Rep. 6, 21926 (2016)
https://doi.org/10.1038/srep21926
38 C. Xu, H. Xiang, J. Gao, and Z. Zheng, Collective dynamics of identical phase oscillators with high-order coupling, Sci. Rep. 6, 31133 (2016)
https://doi.org/10.1038/srep31133
39 X. Huang, J. Gao, Y. Sun, Z. Zheng, and C. Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504 (2016)
https://doi.org/10.1007/s11467-016-0597-y
40 C. J. Goebel, Comment on “Constants of motion for superconductor arrays”, Physica D 80(1–2), 18 (1995)
https://doi.org/10.1016/0167-2789(95)90049-7
41 S. A. Marvel, R. E. Mirollo, and S. H. Strogatz, Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action, Chaos 19(4), 043104 (2009)
https://doi.org/10.1063/1.3247089
42 H. Sakaguchi and Y. Kuramoto, A soluble active rotater model showing phase transitions via mutual entertainment, Prog. Theor. Phys. 76(3), 576 (1986)
https://doi.org/10.1143/PTP.76.576
43 S. A. Marvel and S. H. Strogatz, Invariant submain-fold for series arrays of Josephson junctions, Chaos 19(1), 013132 (2009)
https://doi.org/10.1063/1.3087132
44 F. Dorfler and F. Bullo, Exploring synchronization in complex oscillator networks, in: Proc. 51st IEEE Conf. Decision Control, pp 7157–7170 (2012)
https://doi.org/10.1109/cdc.2012.6425823
[1] Qiong-Lin Dai, Xiao-Xuan Liu, Kai Yang, Hong-Yan Cheng, Hai-Hong Li, Fagen Xie, Jun-Zhong Yang. Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras[J]. Front. Phys. , 2020, 15(6): 62501-.
[2] Jia-Meng Zhang, Xue Li, Yong Zou, Shu-Guang Guan. Novel transition and Bellerophon state in coupled Stuart–Landau oscillators[J]. Front. Phys. , 2019, 14(3): 33603-.
[3] Heng Guo, Jia-Yang Zhang, Yong Zou, Shu-Guang Guan. Cross and joint ordinal partition transition networks for multivariate time series analysis[J]. Front. Phys. , 2018, 13(5): 130508-.
[4] Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling[J]. Front. Phys. , 2018, 13(5): 130506-.
[5] Ben Cao, Ya-Feng Wang, Liang Wang, Yi-Zhen Yu, Xin-Gang Wang. Cluster synchronization in complex network of coupled chaotic circuits: An experimental study[J]. Front. Phys. , 2018, 13(5): 130505-.
[6] Di Yuan, Jun-Long Tian, Fang Lin, Dong-Wei Ma, Jing Zhang, Hai-Tao Cui, Yi Xiao. Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions[J]. Front. Phys. , 2018, 13(3): 130504-.
[7] Fausto Martelli, Hsin-Yu Ko, Carles Calero Borallo, Giancarlo Franzese. Structural properties of water confined by phospholipid membranes[J]. Front. Phys. , 2018, 13(1): 136801-.
[8] Jing Zhang,Yi-Zhen Yu,Xin-Gang Wang. Synchronization of coupled metronomes on two layers[J]. Front. Phys. , 2017, 12(6): 120508-.
[9] Chao-Qing Wang,Alain Pumir,Nicolas B. Garnier,Zong-Hua Liu. Explosive synchronization enhances selectivity: Example of the cochlea[J]. Front. Phys. , 2017, 12(5): 128901-.
[10] Hong-Jie Bi, Yan Li, Li Zhou, Shu-Guang Guan. Nontrivial standing wave state in frequency-weighted Kuramoto model[J]. Front. Phys. , 2017, 12(3): 126801-.
[11] Xia Huang,Jian Gao,Yu-Ting Sun,Zhi-Gang Zheng,Can Xu. Effects of frustration on explosive synchronization[J]. Front. Phys. , 2016, 11(6): 110504-.
[12] Shuai Liu, Guo-Yong Zhang, Zhiwei He, Meng Zhan. Optimal configuration for vibration frequencies in a ring of harmonic oscillators: The nonidentical mass effect[J]. Front. Phys. , 2015, 10(3): 100503-.
[13] Sheng-Fei Ma, Hong-Jie Bi, Yong Zou, Zong-Hua Liu, Shu-Guang Guan. Shuttle-run synchronization in mobile ad hoc networks[J]. Front. Phys. , 2015, 10(3): 100505-.
[14] Ying Zhang, Wen-Hui Wan. States and transitions in mixed networks[J]. Front. Phys. , 2014, 9(4): 523-528.
[15] Wei ZOU (邹为), Xin-gang WANG (王新刚), Qi ZHAO (赵琪), Meng ZHAN (占明). Oscillation death in coupled oscillators[J]. Front Phys Chin, 2009, 4(1): 97-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed