Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2015, Vol. 10 Issue (3) : 100505    https://doi.org/10.1007/s11467-015-0475-z
RESEARCH ARTICLE
Shuttle-run synchronization in mobile ad hoc networks
Sheng-Fei Ma1,Hong-Jie Bi1,Yong Zou1,2,Zong-Hua Liu1,2,Shu-Guang Guan1,2,*()
1. Department of Physics, East China Normal University, Shanghai 200241, China
2. State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(633 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, we study the collective dynamics of phase oscillators in a mobile ad hoc network whose topology changes dynamically. As the network size or the communication radius of individual oscillators increases, the topology of the ad hoc network first undergoes percolation, forming a giant cluster, and then gradually achieves global connectivity. It is shown that oscillator mobility generally enhances the coherence in such networks. Interestingly, we find a new type of phase synchronization/clustering, in which the phases of the oscillators are distributed in a certain narrow range, while the instantaneous frequencies change signs frequently, leading to shuttle-run-like motion of the oscillators in phase space. We conduct a theoretical analysis to explain the mechanism of this synchronization and obtain the critical transition point.

Keywords synchronization      phase transition      ad hoc network     
Corresponding Author(s): Shu-Guang Guan   
Issue Date: 11 June 2015
 Cite this article:   
Zong-Hua Liu,Shu-Guang Guan,Sheng-Fei Ma, et al. Shuttle-run synchronization in mobile ad hoc networks[J]. Front. Phys. , 2015, 10(3): 100505.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0475-z
https://academic.hep.com.cn/fop/EN/Y2015/V10/I3/100505
1 C. E. Perkins, Ad Hoc Networking, New York: Addison-Wesley, 2000
2 T. Camp, J. Boleng, and V. Davies, A survey of mobility models for ad hoc network research, Wireless Commun. Mobile Comput. 2(5), 483 (2002)
https://doi.org/10.1002/wcm.72
3 S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424(4-5), 175 (2006)
https://doi.org/10.1016/j.physrep.2005.10.009
4 S. Liu, Z. W. He, and M. Zhan, Firing rates of coupled noisy excitable elements, Front. Phys. 9(1), 120 (2014)
https://doi.org/10.1007/s11467-013-0365-1
5 Y. Zhang and W. H. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 (2014)
https://doi.org/10.1007/s11467-014-0426-0
6 P. Ke and Z. G. Zheng, Dynamics of rotator chain with dissipative boundary, Front. Phys. 9(4), 511 (2014)
https://doi.org/10.1007/s11467-014-0427-z
7 F. Sivrikaya and B. Yener, Time synchronization in sensor networks: A survey, IEEE Netw. 18(4), 45 (2004)
https://doi.org/10.1109/MNET.2004.1316761
8 C. Thiemann, M. Treiber, and A. Kesting, Longitudinal hopping in intervehicle communication: Theory and simulations on modeled and empirical trajectory data, Phys. Rev. E 78(3), 036102 (2008)
https://doi.org/10.1103/PhysRevE.78.036102
9 Z. Liu, Effect of mobility in partially occupied complex networks, Phys. Rev. E 81(1), 016110 (2010)
https://doi.org/10.1103/PhysRevE.81.016110
10 N. Fujiwara, J. Kurths, and A. Díaz-Guilera, Synchronization in networks of mobile oscillators, Phys. Rev. E 83(2), 025101 (2011) (R)
https://doi.org/10.1103/PhysRevE.83.025101
11 M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boccaletti, Synchronization of moving chaotic agents, Phys. Rev. Lett. 100(4), 044102 (2008)
https://doi.org/10.1103/PhysRevLett.100.044102
12 L. Wang, C. P. Zhu, and Z. M. Gu, Scaling of critical connectivity of mobile ad hoc networks, Phys. Rev. E 78(6), 066107 (2008)
https://doi.org/10.1103/PhysRevE.78.066107
13 Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, New York: Springer, 1984
https://doi.org/10.1007/978-3-642-69689-3
14 S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D 143, 1 (2000)
https://doi.org/10.1016/S0167-2789(00)00094-4
15 W. Krause, I. Glauche, R. Sollacher, and M. Greiner, Impact of network structure on the capacity of wireless multihop ad hoc communication, Physica A 338(3-4), 633 (2004)
https://doi.org/10.1016/j.physa.2004.03.013
[1] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[2] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[3] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
[4] Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice[J]. Front. Phys. , 2021, 16(1): 12503-.
[5] Qiong-Lin Dai, Xiao-Xuan Liu, Kai Yang, Hong-Yan Cheng, Hai-Hong Li, Fagen Xie, Jun-Zhong Yang. Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras[J]. Front. Phys. , 2020, 15(6): 62501-.
[6] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[7] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[8] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[9] Gui-Lei Zhu, Xin-You Lü, Shang-Wu Bin, Cai You, Ying Wu. Entanglement and excited-state quantum phase transition in an extended Dicke model[J]. Front. Phys. , 2019, 14(5): 52602-.
[10] Jia-Meng Zhang, Xue Li, Yong Zou, Shu-Guang Guan. Novel transition and Bellerophon state in coupled Stuart–Landau oscillators[J]. Front. Phys. , 2019, 14(3): 33603-.
[11] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[12] Zhi Lin, Wanli Liu. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices[J]. Front. Phys. , 2018, 13(5): 136402-.
[13] Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104-.
[14] Heng Guo, Jia-Yang Zhang, Yong Zou, Shu-Guang Guan. Cross and joint ordinal partition transition networks for multivariate time series analysis[J]. Front. Phys. , 2018, 13(5): 130508-.
[15] Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling[J]. Front. Phys. , 2018, 13(5): 130506-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed