Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (3) : 126801    https://doi.org/10.1007/s11467-017-0672-z
RESEARCH ARTICLE
Nontrivial standing wave state in frequency-weighted Kuramoto model
Hong-Jie Bi1, Yan Li2,1, Li Zhou3(), Shu-Guang Guan1()
1. Department of Physics, East China Normal University, Shanghai 200241, China
2. Nantong Middle School, 9 Zhongxuetang Road, Nantong 226001, China
3. No. 4 Middle School Affiliated to ECNU, 279 Luding Road, Shanghai 200062, China
 Download: PDF(1040 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Synchronization in a frequency-weighted Kuramoto model with a uniform frequency distribution is studied. We plot the bifurcation diagram and identify the asymptotic coherent states. Numerical simulations show that the system undergoes two first-order transitions in both the forward and backward directions. Apart from the trivial phase-locked state, a novel nonstationary coherent state, i.e., a nontrivial standing wave state is observed and characterized. In this state, oscillators inside the coherent clusters are not frequency-locked as they would be in the usual standing wave state. Instead, their average frequencies are locked to a constant. The critical coupling strength from the incoherent state to the nontrivial standing wave state can be obtained by performing linear stability analysis. The theoretical results are supported by the numerical simulations.

Keywords synchronization      Kuramoto model      nonstationary     
Corresponding Author(s): Li Zhou,Shu-Guang Guan   
Issue Date: 13 April 2017
 Cite this article:   
Hong-Jie Bi,Yan Li,Li Zhou, et al. Nontrivial standing wave state in frequency-weighted Kuramoto model[J]. Front. Phys. , 2017, 12(3): 126801.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0672-z
https://academic.hep.com.cn/fop/EN/Y2017/V12/I3/126801
1 A.Pikovsky, M.Rosenblum, and J.Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2003
2 L.Huang, Y.-C.Lai, K.Park, X. G.Wang, C. H.Lai, and R. A.Gatenby, Synchronization in complex clustered networks, Front. Phys. China2(4), 446 (2007)
https://doi.org/10.1007/s11467-007-0056-x
3 Y.Kuramoto, in: International Symposium on Mathematical Problems in Theoretical Physics, edited byH. Araki, Lecture Notes in Physics Vol. 39, Berlin: Springer-Verlag, 1975
https://doi.org/10.1007/BFb0013365
4 S. H.Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D143(1–4), 1 (2000)
https://doi.org/10.1016/S0167-2789(00)00094-4
5 J. D.Crawford, Amplitude expansions for instabilities in populations of globally-coupled oscillators, J. Stat. Phys.74(5–6), 1047 (1994)
https://doi.org/10.1007/BF02188217
6 J.Gómez-Gardeñes, S.Gomez, A.Arenas, and Y.Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett.106(12), 128701 (2011)
https://doi.org/10.1103/PhysRevLett.106.128701
7 Y.Zou, T.Pereira, M.Small, Z.Liu, and J.Kurths, Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett.112(11), 114102 (2014)
https://doi.org/10.1103/PhysRevLett.112.114102
8 X.Zhang, X.Hu, J.Kurths, and Z.Liu, Explosive synchronization in a general complex network, Phys. Rev. E88(1), 010802(R) (2013)
9 X.Hu, S.Boccaletti, W.Huang, X.Zhang, Z.Liu, S.Guan, and C.H.Lai, Exact solution for the first-order synchronization transition in a generalized Kuramoto model, Sci. Rep.4, 7262 (2014)
https://doi.org/10.1038/srep07262
10 W.Zhou, L.Chen, H.Bi, X.Hu, Z.Liu, andS.Guan, Explosive synchronization with asymmetric frequency distribution, Phys. Rev. E92(1), 012812 (2015)
https://doi.org/10.1103/PhysRevE.92.012812
11 X.Zhang, S.Boccaletti, S.Guan, and Z.Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett.114(3), 038701 (2015)
https://doi.org/10.1103/PhysRevLett.114.038701
12 X.Huang, J.Gao, Y. T.Sun, Z. G.Zheng, and C.Xu, Effects of frustration on explosive synchronization, Front. Phys.11(6), 110504 (2016)
https://doi.org/10.1007/s11467-016-0597-y
13 H.Hong and S. H.Strogatz, Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators, Phys. Rev. Lett.106(5), 054102 (2011)
https://doi.org/10.1103/PhysRevLett.106.054102
14 H.Bi, X.Hu, S.Boccaletti, X.Wang, Y.Zou, Z.Liu, and S.Guan, Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett.117(20), 204101 (2016)
https://doi.org/10.1103/PhysRevLett.117.204101
15 E. A.Martens, E.Barreto, S. H.Strogatz, E.Ott, P.So, and T. M.Antonsen, Exact results for the Kuramoto model with a bimodal frequency distribution, Phys. Rev. E79(2), 026204 (2009)
https://doi.org/10.1103/PhysRevE.79.026204
16 E.Ott and T. M.Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos18(3), 037113 (2008)
https://doi.org/10.1063/1.2930766
17 T.Qiu, S.Boccaletti, I.Bonamassa, Y.Zou, J.Zhou, Z.Liu, and S.Guan, Synchronization and Bellerophon states in conformist and contrarian oscillators, Sci. Rep.6, 36713 (2016)
https://doi.org/10.1038/srep36713
[1] Qiong-Lin Dai, Xiao-Xuan Liu, Kai Yang, Hong-Yan Cheng, Hai-Hong Li, Fagen Xie, Jun-Zhong Yang. Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras[J]. Front. Phys. , 2020, 15(6): 62501-.
[2] Jia-Meng Zhang, Xue Li, Yong Zou, Shu-Guang Guan. Novel transition and Bellerophon state in coupled Stuart–Landau oscillators[J]. Front. Phys. , 2019, 14(3): 33603-.
[3] Heng Guo, Jia-Yang Zhang, Yong Zou, Shu-Guang Guan. Cross and joint ordinal partition transition networks for multivariate time series analysis[J]. Front. Phys. , 2018, 13(5): 130508-.
[4] Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling[J]. Front. Phys. , 2018, 13(5): 130506-.
[5] Ben Cao, Ya-Feng Wang, Liang Wang, Yi-Zhen Yu, Xin-Gang Wang. Cluster synchronization in complex network of coupled chaotic circuits: An experimental study[J]. Front. Phys. , 2018, 13(5): 130505-.
[6] Di Yuan, Jun-Long Tian, Fang Lin, Dong-Wei Ma, Jing Zhang, Hai-Tao Cui, Yi Xiao. Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions[J]. Front. Phys. , 2018, 13(3): 130504-.
[7] Jing Zhang,Yi-Zhen Yu,Xin-Gang Wang. Synchronization of coupled metronomes on two layers[J]. Front. Phys. , 2017, 12(6): 120508-.
[8] Hong-Bin Chen, Yu-Ting Sun, Jian Gao, Can Xu, Zhi-Gang Zheng. Order parameter analysis of synchronization transitions on star networks[J]. Front. Phys. , 2017, 12(6): 120504-.
[9] Chao-Qing Wang,Alain Pumir,Nicolas B. Garnier,Zong-Hua Liu. Explosive synchronization enhances selectivity: Example of the cochlea[J]. Front. Phys. , 2017, 12(5): 128901-.
[10] Xia Huang,Jian Gao,Yu-Ting Sun,Zhi-Gang Zheng,Can Xu. Effects of frustration on explosive synchronization[J]. Front. Phys. , 2016, 11(6): 110504-.
[11] Shuai Liu, Guo-Yong Zhang, Zhiwei He, Meng Zhan. Optimal configuration for vibration frequencies in a ring of harmonic oscillators: The nonidentical mass effect[J]. Front. Phys. , 2015, 10(3): 100503-.
[12] Sheng-Fei Ma, Hong-Jie Bi, Yong Zou, Zong-Hua Liu, Shu-Guang Guan. Shuttle-run synchronization in mobile ad hoc networks[J]. Front. Phys. , 2015, 10(3): 100505-.
[13] Ying Zhang, Wen-Hui Wan. States and transitions in mixed networks[J]. Front. Phys. , 2014, 9(4): 523-528.
[14] Wei ZOU (邹为), Xin-gang WANG (王新刚), Qi ZHAO (赵琪), Meng ZHAN (占明). Oscillation death in coupled oscillators[J]. Front Phys Chin, 2009, 4(1): 97-110.
[15] YANG Kong-qing, YANG Lei, GONG Bai-hua, LIN Zhong-cai, HE Hong-sheng, HUANG Liang. Geographical networks: geographical effects on network properties[J]. Front. Phys. , 2008, 3(1): 105-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed