|
|
Nontrivial standing wave state in frequency-weighted Kuramoto model |
Hong-Jie Bi1, Yan Li2,1, Li Zhou3( ), Shu-Guang Guan1( ) |
1. Department of Physics, East China Normal University, Shanghai 200241, China 2. Nantong Middle School, 9 Zhongxuetang Road, Nantong 226001, China 3. No. 4 Middle School Affiliated to ECNU, 279 Luding Road, Shanghai 200062, China |
|
|
Abstract Synchronization in a frequency-weighted Kuramoto model with a uniform frequency distribution is studied. We plot the bifurcation diagram and identify the asymptotic coherent states. Numerical simulations show that the system undergoes two first-order transitions in both the forward and backward directions. Apart from the trivial phase-locked state, a novel nonstationary coherent state, i.e., a nontrivial standing wave state is observed and characterized. In this state, oscillators inside the coherent clusters are not frequency-locked as they would be in the usual standing wave state. Instead, their average frequencies are locked to a constant. The critical coupling strength from the incoherent state to the nontrivial standing wave state can be obtained by performing linear stability analysis. The theoretical results are supported by the numerical simulations.
|
Keywords
synchronization
Kuramoto model
nonstationary
|
Corresponding Author(s):
Li Zhou,Shu-Guang Guan
|
Issue Date: 13 April 2017
|
|
1 |
A.Pikovsky, M.Rosenblum, and J.Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2003
|
2 |
L.Huang, Y.-C.Lai, K.Park, X. G.Wang, C. H.Lai, and R. A.Gatenby, Synchronization in complex clustered networks, Front. Phys. China2(4), 446 (2007)
https://doi.org/10.1007/s11467-007-0056-x
|
3 |
Y.Kuramoto, in: International Symposium on Mathematical Problems in Theoretical Physics, edited byH. Araki, Lecture Notes in Physics Vol. 39, Berlin: Springer-Verlag, 1975
https://doi.org/10.1007/BFb0013365
|
4 |
S. H.Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D143(1–4), 1 (2000)
https://doi.org/10.1016/S0167-2789(00)00094-4
|
5 |
J. D.Crawford, Amplitude expansions for instabilities in populations of globally-coupled oscillators, J. Stat. Phys.74(5–6), 1047 (1994)
https://doi.org/10.1007/BF02188217
|
6 |
J.Gómez-Gardeñes, S.Gomez, A.Arenas, and Y.Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett.106(12), 128701 (2011)
https://doi.org/10.1103/PhysRevLett.106.128701
|
7 |
Y.Zou, T.Pereira, M.Small, Z.Liu, and J.Kurths, Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett.112(11), 114102 (2014)
https://doi.org/10.1103/PhysRevLett.112.114102
|
8 |
X.Zhang, X.Hu, J.Kurths, and Z.Liu, Explosive synchronization in a general complex network, Phys. Rev. E88(1), 010802(R) (2013)
|
9 |
X.Hu, S.Boccaletti, W.Huang, X.Zhang, Z.Liu, S.Guan, and C.H.Lai, Exact solution for the first-order synchronization transition in a generalized Kuramoto model, Sci. Rep.4, 7262 (2014)
https://doi.org/10.1038/srep07262
|
10 |
W.Zhou, L.Chen, H.Bi, X.Hu, Z.Liu, andS.Guan, Explosive synchronization with asymmetric frequency distribution, Phys. Rev. E92(1), 012812 (2015)
https://doi.org/10.1103/PhysRevE.92.012812
|
11 |
X.Zhang, S.Boccaletti, S.Guan, and Z.Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett.114(3), 038701 (2015)
https://doi.org/10.1103/PhysRevLett.114.038701
|
12 |
X.Huang, J.Gao, Y. T.Sun, Z. G.Zheng, and C.Xu, Effects of frustration on explosive synchronization, Front. Phys.11(6), 110504 (2016)
https://doi.org/10.1007/s11467-016-0597-y
|
13 |
H.Hong and S. H.Strogatz, Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators, Phys. Rev. Lett.106(5), 054102 (2011)
https://doi.org/10.1103/PhysRevLett.106.054102
|
14 |
H.Bi, X.Hu, S.Boccaletti, X.Wang, Y.Zou, Z.Liu, and S.Guan, Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett.117(20), 204101 (2016)
https://doi.org/10.1103/PhysRevLett.117.204101
|
15 |
E. A.Martens, E.Barreto, S. H.Strogatz, E.Ott, P.So, and T. M.Antonsen, Exact results for the Kuramoto model with a bimodal frequency distribution, Phys. Rev. E79(2), 026204 (2009)
https://doi.org/10.1103/PhysRevE.79.026204
|
16 |
E.Ott and T. M.Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos18(3), 037113 (2008)
https://doi.org/10.1063/1.2930766
|
17 |
T.Qiu, S.Boccaletti, I.Bonamassa, Y.Zou, J.Zhou, Z.Liu, and S.Guan, Synchronization and Bellerophon states in conformist and contrarian oscillators, Sci. Rep.6, 36713 (2016)
https://doi.org/10.1038/srep36713
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|