Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (1) : 130302    https://doi.org/10.1007/s11467-017-0706-6
RESEARCH ARTICLE
Clock frequency estimation under spontaneous emission
Xi-Zhou Qin (秦锡洲)1, Jia-Hao Huang (黄嘉豪)1, Hong-Hua Zhong (钟宏华)1, Chaohong Lee (李朝红)1,2()
1. TianQin Research Center & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
2. Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University (Guangzhou Campus), Guangzhou 510275, China
 Download: PDF(1449 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the quantum dynamics of a driven two-level system under spontaneous emission and its application in clock frequency estimation. By using the Lindblad equation to describe the system, we analytically obtain its exact solutions, which show three different regimes: Rabi oscillation, damped oscillation, and overdamped decay. From the analytical solutions, we explore how the spontaneous emission affects the clock frequency estimation. We find that under a moderate spontaneous emission rate, the transition frequency can still be inferred from the Rabi oscillation. Our results enable potential practical applications in frequency measurement and quantum control under decoherence.

Keywords clock frequency estimation      two-level system      spontaneous emission     
Corresponding Author(s): Chaohong Lee (李朝红)   
Issue Date: 07 September 2017
 Cite this article:   
Xi-Zhou Qin (秦锡洲),Jia-Hao Huang (黄嘉豪),Hong-Hua Zhong (钟宏华), et al. Clock frequency estimation under spontaneous emission[J]. Front. Phys. , 2018, 13(1): 130302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0706-6
https://academic.hep.com.cn/fop/EN/Y2018/V13/I1/130302
19 S.Weinberg, Lindblad decoherence in atomic clocks, Phys. Rev. A94(4), 042117(2016)
https://doi.org/10.1103/PhysRevA.94.042117
20 E.Barnesand S.Das Sarma, Analytically solvable driven time-dependent two-level quantum systems, Phys. Rev. Lett. 109(6), 060401(2012)
https://doi.org/10.1103/PhysRevLett.109.060401
21 L. D.Landau, On the theory of transfer of energy at collisions II, Phys. Z. Sowjetunion2, 46(1932)
22 C.Zener, Non-adiabatic crossing of energy levels, Proc. R. Soc. Lond. A137(833), 696(1932)
https://doi.org/10.1098/rspa.1932.0165
23 L.Allenand J. H.Eberly,Optical Resonance and Two- Level Atoms, New York: Dover Publications, 1987
24 R. W.Boyd, Nonlinear Optics, Boston: Academic Press, 1992
25 P.Meystre, Atom Optics, New York: Springer-Verlag, 2001
26 S.Harocheand J. M.Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, New York: Oxford University Press, 2006
https://doi.org/10.1093/acprof:oso/9780198509141.001.0001
27 P. A.Ivanovand D.Porras, Adiabatic quantum metrology with strongly correlated quantum optical systems, Phys. Rev. A88(2), 023803(2013)
https://doi.org/10.1103/PhysRevA.88.023803
28 N.Malossi, M. G.Bason, M.Viteau, E.Arimondo, D.Ciampini, R.Mannella, and O.Morsch, Quantum driving of a two level system: Quantum speed limit and superadiabatic protocols – an experimental investigation, J. Phys. Conf. Ser. 442(1), 012062(2013)
https://doi.org/10.1088/1742-6596/442/1/012062
29 Z.Tian, J.Wang, H.Fan, andJ.Jing, Relativistic quantum metrology in open system dynamics, Sci. Rep. 5(1), 7946(2015)
https://doi.org/10.1038/srep07946
30 P. A.Ivanov, K.Singer, N. V.Vitanov, and D.Porras, Quantum sensors assisted by spontaneous symmetry breaking for detecting very small forces, Phys. Rev. Appl. 4(5), 054007(2015)
https://doi.org/10.1103/PhysRevApplied.4.054007
1 J. L.Hall, Nobel lecture: Defining and measuring optical frequencies, Rev. Mod. Phys. 78(4), 1279 (2006)
https://doi.org/10.1103/RevModPhys.78.1279
2 T. W.Hänsch, Nobel lecture: Passion for precision, Rev. Mod. Phys. 78(4), 1297(2006)
https://doi.org/10.1103/RevModPhys.78.1297
3 H.Margolis, Timekeepers of the future, Nat. Phys. 10(2), 82(2014)
4 M.Takamotoand H.Katori, Spectroscopy of the 1S0–3P0 clock transition of 87Sr in an optical lattice, Phys. Rev. Lett. 91(22), 223001(2003)
https://doi.org/10.1103/PhysRevLett.91.223001
5 T.Steinmetz, T.Wilken, C.Araujo-Hauck, R.Holzwarth, T. W.Hänsch, L.Pasquini, A.Manescau, S.D’Odorico, M. T.Murphy, T.Kentischer, W.Schmidt, and T.Udem, Laser frequency combs for astronomical observations, Science321(5894), 1335(2008)
https://doi.org/10.1126/science.1161030
6 M. S.Grewal,A. P.Andrews, and C. G.Bartone, Global Navigation Satellite Systems, Inertial Navigation, and Integration, New York: John Wiley & Sons, 2013
7 J.Kitching, S.Knappe, and E. A.Donley, Atomic sensors – A review, IEEE Sens. J. 11(9), 1749(2011)
https://doi.org/10.1109/JSEN.2011.2157679
8 D.Budkerand M.Romalis, Optical magnetometry, Nat. Phys. 3(4), 227(2007)
9 I. I.Rabi, Space quantization in a gyrating magnetic field, Phys. Rev. 51(8), 652(1937)
https://doi.org/10.1103/PhysRev.51.652
10 N.Hinkley, J. A.Sherman, N. B.Phillips, M.Schioppo, N. D.Lemke, K.Beloy, M.Pizzocaro,C. W.Oates, and A. D.Ludlow, An atomic clock with 10−18 instability, Science341(6151), 1215(2013)
https://doi.org/10.1126/science.1240420
11 B. J.Bloom, T. L.Nicholson, J. R.Williams, S. L.Campbell, M.Bishof, X.Zhang, W.Zhang, S. L.Bromley, and J.Ye, An optical lattice clock with accuracy and stability at the 10−18 level, Nature506(7486), 71(2014)
https://doi.org/10.1038/nature12941
12 T. L.Nicholson,S. L.Campbell, R. B.Hutson, G. E.Marti, B. J.Bloom, R. L.McNally, W.Zhang, M. D.Barrett, M. S.Safronova, G. F.Strouse, W. L.Tew, and J.Ye, Systematic evaluation of an atomic clock at 2×10−18 total uncertainty, Nat. Commun. 6, 6896(2015)
https://doi.org/10.1038/ncomms7896
13 S. G.Porsevand A.Derevianko, Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks, Phys. Rev. A74(2), 020502(R) (2006)
14 A. V.Taichenachev, V. I.Yudin, V. D.Ovsiannikov, and V. G.Pal’chikov, Optical lattice polarization effects on hyperpolarizability of atomic clock transitions, Phys. Rev. Lett. 97(17), 173601(2006)
https://doi.org/10.1103/PhysRevLett.97.173601
15 K.Gibble, Decoherence and collisional frequency shifts of trapped bosons and fermions, Phys. Rev. Lett. 103(11), 113202(2009)
https://doi.org/10.1103/PhysRevLett.103.113202
16 T.Rosenband,D. B.Hume, P. O.Schmidt, C. W.Chou, A.Brusch, L.Lorini, W. H.Oskay, R. E.Drullinger, T. M.Fortier, J. E.Stalnaker,S. A.Diddams, W. C.Swann,N. R.Newbury, W. M.Itano, D. J.Wineland, and J. C.Bergquist, Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place, Science319(5871), 1808(2008)
https://doi.org/10.1126/science.1154622
17 C. W.Chou, D. B.Hume,J. C. J.Koelemeij,D. J.Wineland, and T.Rosenband, Frequency comparison of two high-accuracy Al+ optical clocks, Phys. Rev. Lett. 104(7), 070802(2010)
https://doi.org/10.1103/PhysRevLett.104.070802
18 N.Huntemann, C.Sanner, B.Lipphardt, C.Tamm, and E.Peik, Single-ion atomic clock with 3×10−18 systematic uncertainty, Phys. Rev. Lett. 116(6), 063001(2016)
https://doi.org/10.1103/PhysRevLett.116.063001
31 A.Greilich, S. E.Economou, S.Spatzek, D. R.Yakovlev, D.Reuter, A. D.Wieck, T. L.Reinecke, and M.Bayer, Ultrafast optical rotations of electron spins in quantum dots, Nat. Phys. 5(4), 262(2009)
32 E.Poem, O.Kenneth, Y.Kodriano, Y.Benny, S.Khatsevich, J. E.Avron, and D.Gershoni, Optically induced rotation of an exciton spin in a semiconductor quantum dot, Phys. Rev. Lett. 107(8), 087401(2011)
https://doi.org/10.1103/PhysRevLett.107.087401
33 M. G.Bason, M.Viteau, N.Malossi, P.Huillery, E.Arimondo, D.Ciampini, R.Fazio, V.Giovannetti, R.Mannella, and O.Morsch, High-fidelity quantum driving, Nat. Phys. 8(2), 147(2011)
34 S.Sauer, C.Gneiting, and A.Buchleitner, Optimal coherent control to counteract dissipation, Phys. Rev. Lett. 111(3), 030405(2013)
https://doi.org/10.1103/PhysRevLett.111.030405
35 D.Daems, A.Ruschhaupt, D.Sugny, and S.Guérin, Robust quantum control by a single-shot shaped pulse, Phys. Rev. Lett. 111(5), 050404(2013)
https://doi.org/10.1103/PhysRevLett.111.050404
36 Y.Wuand X.Yang, Strong-coupling theory of periodically driven two-level systems, Phys. Rev. Lett. 98(1), 013601(2007)
https://doi.org/10.1103/PhysRevLett.98.013601
37 X.Yangand Y.Wu, Weak-coupling theory for semiclassical periodically driven two-level systems: Beyoud rotating-wave approximation, Commum. Theor. Phys. 48(2), 339(2007)
https://doi.org/10.1088/0253-6102/48/2/027
38 Q.Xieand W.Hai, Analytical results for a monochromatically driven two-level system, Phys. Rev. A82(3), 032117(2010)
https://doi.org/10.1103/PhysRevA.82.032117
39 W.Hai, K.Hai, and Q.Chen, Transparent control of an exactly solvable two-level system via combined modulations, Phys. Rev. A87(2), 023403(2013)
https://doi.org/10.1103/PhysRevA.87.023403
40 E.Barnes, Analytically solvable two-level quantum systems and Landau-Zener interferometry, Phys. Rev. A88(1), 013818(2013)
https://doi.org/10.1103/PhysRevA.88.013818
41 A.Messinaand H.Nakazato, Analytically solvable Hamiltonians for quantum two-level systems and their dynamics, J. Phys. A Math. Theor. 47(44), 445302(2014)
https://doi.org/10.1088/1751-8113/47/44/445302
42 H. P.Breuerand F.Petruccione, The Theory of Open Quantum Systems, New York: Oxford University Press, 2002
43 M. A.Nielsenand I. L.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
44 M.Grifoniand P.Hänggi, Driven quantum tunneling, Phys. Rep. 304(5–6), 229(1998)
https://doi.org/10.1016/S0370-1573(98)00022-2
45 M.Thorwart, L.Hartmann, I.Goychuk, and P.Hänggi, Controlling decoherence of a two-level atom in a lossy cavity, J. Mod. Opt. 47(14–15), 2905(2000)
https://doi.org/10.1080/09500340008232205
46 D.Mogilevtsev, A. P.Nisovtsev, S.Kilin, S. B.Cavalcanti, H. S.Brandi, and L. E.Oliveira, Drivingdependent damping of Rabi oscillations in two-level semiconductor systems, Phys. Rev. Lett. 100(1), 017401(2008)
https://doi.org/10.1103/PhysRevLett.100.017401
47 A.Sergiand K. G.Zloshchastiev, Non-Hermitian quantum dynamics of a two-level system and models of dissipative environments, Int. J. Mod. Phys. B27(27), 1350163(2013)
https://doi.org/10.1142/S0217979213501634
48 K. N.Zlatanov, G. S.Vasilev, P. A.Ivanov, and N. V.Vitanov, Exact solution of the Bloch equations for the nonresonant exponential model in the presence of dephasing, Phys. Rev. A92(4), 043404(2015)
https://doi.org/10.1103/PhysRevA.92.043404
49 M. S. P.Eastham, The Spectral Theory of Periodic Differential Equations, Edinburgh and London: Scottish Academic Press, 1973
[1] Fei Song, Jin-Yu Chen, Zhi-Ping Wang, Ben-Li Yu. Three-dimensional atom localization via spontaneous emission in a four-level atom[J]. Front. Phys. , 2018, 13(5): 134208-.
[2] Jing-feng LIU(刘景锋), Xue-hua WANG(王雪华), . Spontaneous emission in micro- and nano-structures[J]. Front. Phys. , 2010, 5(3): 245-259.
[3] Zbigniew FICEK, . Quantum entanglement and disentanglement of multi-atom systems[J]. Front. Phys. , 2010, 5(1): 26-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed