Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (1) : 130303    https://doi.org/10.1007/s11467-017-0709-3
RESEARCH ARTICLE
Cavity control as a new quantum algorithms implementation treatment
M. AbuGhanem1,2(), A. H. Homid1,3, M. Abdel-Aty1
1. University of Science and Technology, Zewail City of Science and Technology, Giza, 12588, Egypt
2. Department of Mathematics, Faculty of Science, Ain-Shams University, Cairo, 11566, Egypt
3. Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
 Download: PDF(8110 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on recent experiments [Nature 449, 438 (2007) and Nature Physics 6, 777 (2010)], a new approach for realizing quantum gates for the design of quantum algorithms was developed. Accordingly, the operation times of such gates while functioning in algorithm applications depend on the number of photons present in their resonant cavities. Multi-qubit algorithms can be realized in systems in which the photon number is increased slightly over the qubit number. In addition, the time required for operation is considerably less than the dephasing and relaxation times of the systems. The contextual use of the photon number as a main control in the realization of any algorithm was demonstrated. The results indicate the possibility of a full integration into the realization of multi-qubit multiphoton states and its application in algorithm designs. Furthermore, this approach will lead to a successful implementation of these designs in future experiments.

Keywords quantum computation      quantum algorithms implementation      cavity control     
Corresponding Author(s): M. AbuGhanem   
Issue Date: 22 September 2017
 Cite this article:   
M. AbuGhanem,A. H. Homid,M. Abdel-Aty. Cavity control as a new quantum algorithms implementation treatment[J]. Front. Phys. , 2018, 13(1): 130303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0709-3
https://academic.hep.com.cn/fop/EN/Y2018/V13/I1/130303
1 A. M.Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. Lond. Math. Soc. s2–42(1), 230 (1937)
2 R. P.Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21(6–7), 467(1982)
https://doi.org/10.1007/BF02650179
3 P.Benioff, Quantum mechanical models of Turing machines that dissipate no energy, Phys. Rev. Lett. 48(23), 1581(1982)
https://doi.org/10.1103/PhysRevLett.48.1581
4 D.Deutsch, Quantum theory, the Church-Turing Principle and the universal quantum computer, Proc. R. Soc. Lond. A400(1818), 97(1985)
5 D.Deutsch, Quantum computational networks, Proc. R. Soc. Lond. A425(1868), 73(1989)
6 D. P.DiVincenzo, Quantum computation, Science270(5234), 255(1995)
https://doi.org/10.1126/science.270.5234.255
7 D. P.DiVincenzo, The physical implementation of quantum computation, Fortschr. Phys. 48(9–11), 771(2000)
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
8 M.Nakahara, S.Kanemitsu, M. M.Salomaa, and S.Takagi(Eds.), Physical Realization of Quantum Computing: Are the DiVincenzo Criteria Fulfilled in 2004? Singapore: World Scientific, 2006
https://doi.org/10.1142/5928
9 L. M. K.Vandersypenand I. L.Chuang, NMR techniques for quantum control and computation, Rev. Mod. Phys. 76(4), 1037(2005)
https://doi.org/10.1103/RevModPhys.76.1037
10 E. L.Raab, M.Prentiss, A.Cable, S.Chu, and D. E.Pritchard, Trapping of neutral sodium atoms with radiation pressure, Phys. Rev. Lett. 59(23), 2631(1987)
https://doi.org/10.1103/PhysRevLett.59.2631
11 G.Wendinand V. S.Shumeiko, Superconducting quantum circuits, qubits and computing, arXiv: condmat/ 0508729 (2005)
12 B. D.Josephson, Possible new effects in superconductive tunnelling, Phys. Lett. 1(7), 251(1962)
https://doi.org/10.1016/0031-9163(62)91369-0
13 B. D.Josephson, The discovery of tunnelling supercurrents, Rev. Mod. Phys. 46(2), 251(1974)
https://doi.org/10.1103/RevModPhys.46.251
14 U.Meirav, M. A.Kastner, and S. J.Wind, Singleelectron charging and periodic conductance resonances in GaAs nanostructures, Phys. Rev. Lett.65(6), 771(1990)
https://doi.org/10.1103/PhysRevLett.65.771
15 O.Gamel, H.Chan, G.Fleming, and K. B.Whaley, Fully quantum analysis of photosynthetic coherent energy absorption and transfer, Bull. Am. Phys. Soc. 62, 4 (2017)
16 B.Schumacher, Quantum coding, Phys. Rev. A51(4), 2738(1995)
https://doi.org/10.1103/PhysRevA.51.2738
17 J. M.Martinis, Superconducting phase qubits, Quant. Inf. Proc. 8(2–3), 81(2009)
https://doi.org/10.1007/s11128-009-0105-1
18 H.Eleuch, Entanglement and autocorrelation function in semiconductor microcavities, Int. J. Mod. Phys. B24(29), 5653(2010)
https://doi.org/10.1142/S0217979210057511
19 H.Eleuch, Autocorrelation function of microcavityemitting field in the linear regime, EPJD48(1), 139(2008)
https://doi.org/10.1140/epjd/e2008-00079-1
20 E. A.Sete, A. A.Svidzinsky, H.Eleuch, Z.Yang, R. D.Nevels, and M. O.Scully, Correlated spontaneous emission on the Danube, J. Mod. Opt. 57(14–15), 1311(2010)
https://doi.org/10.1080/09500341003605445
21 E. A.Sete, A. A.Svidzinsky, Y. V.Rostovtsev, H.Eleuch, P. K.Jha, S.Suckewer, and M. O.Scully, Using quantum coherence to generate gain in the XUV and X-ray: Gain-Swept superradiance and lasing without inversion, IEEE J. Sel. Top. Quantum Electron. 18(1), 541(2012)
https://doi.org/10.1109/JSTQE.2011.2135339
22 H.Eleuchand R.Bennaceur, An optical soliton pair among absorbingthree-level atoms, J. Opt. A5(5), 528(2003)
https://doi.org/10.1088/1464-4258/5/5/315
23 M.Tinkham, Introduction to Superconductivity, 2nd Ed., New York: McGraw Hill, 1996
24 R. W.Simmonds, K.Lang, D.Hite, S.Nam, D.Pappas, and J.Martinis, Decoherence in Josephson Phase Qubits from Junction Resonators, Phys. Rev. Lett. 93(7), 077003(2004)
https://doi.org/10.1103/PhysRevLett.93.077003
25 M. A.Sillanpää, J. I.Park, and R. W.Simmonds, Coherent quantum state storage and transfer between two phase qubits via a resonant cavity, Nature449, 438(2007)
https://doi.org/10.1038/nature06124
26 F.Altomare, J. I.Park, K.Cicak, M. A.Sillanpää, M. S.Allman, D.Li, A.Sirois, J. A.Strong, J. D.Whittaker, and R. W.Simmonds, Tripartite interactions between two phase qubits and a resonant cavity, Nat. Phys. 6(10), 777(2010)
27 O.Gameland D. F. V.James, Time-averaged quantum dynamics and the validity of the effective Hamiltonian model, Phys. Rev. A82, 052106(2010)
https://doi.org/10.1103/PhysRevA.82.052106
28 M. A.Nielsenand I. L.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, Ch. 4 and 6 (2000)
29 H. F.Wang, X. Q.Shao, Y. F.Zhao, S.Zhang, and K. H.Yeon, Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED, J. Phys. At. Mol. Opt. Phys. 43(6), 065503(2010)
https://doi.org/10.1088/0953-4075/43/6/065503
30 H. F.Wang, J. J.Wen, A. D.Zhu, S.Zhang, and K. H.Yeon, Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity, New J. Phys. 13, 013021(2011)
https://doi.org/10.1088/1367-2630/13/1/013021
31 H. F.Wang, X. X.Jiang, S.Zhang, and K. H.Yeon, Efficient quantum circuit for implementing discrete quantum Fourier transform in solid-state qubits, J. Phys. At. Mol. Opt. Phys. 44(11), 115502(2011)
https://doi.org/10.1088/0953-4075/44/11/115502
32 A. S. F.Obada, H. A.Hessian, A. B. A.Mohamed, and A. H.Homid, Efficient protocol of NN-bit discrete quantum Fourier transform via transmon qubits coupled to a resonator, Quant. Inf. Proc. 13(2), 475(2014)
https://doi.org/10.1007/s11128-013-0664-z
33 A. H.Homid, A.Abdel-Aty, M.Abdel-Aty, A.Badawi, and A. S. F.Obada, Efficient realization of quantum search algorithm using quantum annealing processor with dissipation, J. Opt. Soc. Am. B32(9), 2025(2015)
https://doi.org/10.1364/JOSAB.32.002025
34 D.Deutschand R.Jozsa, Rapid solution of problems by quantum computation, Proc. R. Soc. Lond. A439(1907), 553(1992)
35 D. R.Simon,On the power of quantum computation, Proc. 35th IEEE Symp. Found. Comp. Sci., Santa Fe, NM116–123 (1994)
https://doi.org/10.1109/SFCS.1994.365701
36 D. R.Simon, On the power of quantum computation, SIAM J. Comput. 26(5), 1474(1997)
https://doi.org/10.1137/S0097539796298637
37 B. C.Sandersand G. J.Milburn, Optimal quantum measurements for phase estimation, Phys. Rev. Lett. 75(16), 2944(1995)
https://doi.org/10.1103/PhysRevLett.75.2944
38 P.Shor, Discrete logarithms and factoring, Proc. 35th Ann. Symp. Found.Comp. Sci. 124(1994)
39 P.Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26(5), 1484(1997)
https://doi.org/10.1137/S0097539795293172
40 O.Manasreh, Semiconductor Heterojunctions and Nanostructures, New York: McGraw-Hill Profes-sional, 2005
41 R. D.Levine, Quantum Mechanics of Molecular Rate Processes, New York: Dover Publications, 1999
42 N.Fromanand P. O.Froman, JWKB Approximation, Amsterdam: North-Holland, Amsterdam, 1965
43 H.Eleuch, Y. V.Rostovtsev, and M. O.Scully, New analytic solution of Schrödinger’s equation, EPL(Europhys. Lett.)89(5), 50004(2010)
https://doi.org/10.1209/0295-5075/89/50004
44 J. Q.You and F.Nori, Superconducting circuits and quantum information, Phys. Today58(11), 42 (2005)
https://doi.org/10.1063/1.2155757
[1] Jing Xu, Sai Li, Tao Chen, Zheng-Yuan Xue. Nonadiabatic geometric quantum computation with optimal control on superconducting circuits[J]. Front. Phys. , 2020, 15(4): 41503-.
[2] Xiao-Long Su, Shu-Hong Hao, Ya-Ping Zhao, Xiao-Wei Deng, Xiao-Jun Jia, Chang-De Xie, Kun-Chi Peng. Demonstration of eight-partite two-diamond shape cluster state for continuous variables[J]. Front. Phys. , 2013, 8(1): 20-26.
[3] Xin-hua PENG (彭新华), Dieter SUTER, . Spin qubits for quantum simulations [J]. Front. Phys. , 2010, 5(1): 1-25.
[4] KIELPINSKI Dave. Ion-trap quantum information processing: experimental status[J]. Front. Phys. , 2008, 3(4): 365-381.
[5] WAN Jin-yin, WANG Yu-zhu, LIU Liang. Ion trapping for quantum information processing[J]. Front. Phys. , 2007, 2(4): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed