Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (4) : 137108    https://doi.org/10.1007/s11467-018-0813-z
RESEARCH ARTICLE
Electron mass enhancement and magnetic phase separation near the Mott transition in double-layer ruthenates
Jin Peng1(), X. M. Gu2, G. T. Zhou2, W. Wang2, J. Y. Liu3, Yu Wang3, Z. Q. Mao3, X. S. Wu2, Shuai Dong1
1. School of Physics, Southeast University, Nanjing 211189, China
2. Collaborative Innovation Center of Advanced Microstrucutres, Lab of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
3. Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA
 Download: PDF(1035 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a detailed investigation of the specific heat of Ca3(Ru1−xMx)2O7 (M= Ti, Fe, Mn) single crystals. Depending on the dopant and doping level, three distinct regions are present: a quasitwo- dimensional metallic state with antiferromagnetic (AFM) order formed by ferromagnetic bilayers (AFM-b), a Mott insulating state with G-type AFM order (G-AFM), and a localized state with a mixed AFM-b and G-AFM phase. Our specific heat data provide deep insights into the Mott transitions induced by Ti and Mn doping. We observed not only an anomalous large mass enhancement, but also an additional term in the specific heat, i.e., CT2, in the localized region. The CT2 term is most likely due to long-wavelength excitations with both FM and AFM components. A decrease in the Debye temperature is observed in the G-type AFM region, indicating lattice softening associated with the Mott transition.

Keywords specific heat      ruthenates      Mott insulator      phase separation     
Corresponding Author(s): Jin Peng   
Issue Date: 06 August 2018
 Cite this article:   
Jin Peng,X. M. Gu,G. T. Zhou, et al. Electron mass enhancement and magnetic phase separation near the Mott transition in double-layer ruthenates[J]. Front. Phys. , 2018, 13(4): 137108.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0813-z
https://academic.hep.com.cn/fop/EN/Y2018/V13/I4/137108
1 M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70(4), 1039 (1998)
https://doi.org/10.1103/RevModPhys.70.1039
2 V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, and V. A. Khodel, Strongly correlated Fermi systems as a new state of matter, Front. Phys. 11(5), 117103 (2016)
https://doi.org/10.1007/s11467-016-0608-0
3 L. F. Lin, L. Z. Wu, and S. Dong, Interfacial phase competition induced Kondo-like effect in manganiteinsulator composites, Front. Phys. 11(6), 117502 (2016)
https://doi.org/10.1007/s11467-016-0584-3
4 Y. Xing, Y. Sun, M. Singh, Y. F. Zhao, M. H. W. Chan, and J. Wang, Electronic transport properties of topological insulator films and low dimensional superconductors, Front. Phys. 8(5), 491 (2013)
https://doi.org/10.1007/s11467-013-0380-2
5 P. D. Dernier and M. Marezio, Crystal structure of the low-temperature antiferromagnetic phase of V2O3, Phys. Rev. B 2(9), 3771 (1970)
https://doi.org/10.1103/PhysRevB.2.3771
6 D. B. McWhan, A. Menth, J. P. Remeika, W. F. Brinkman, and T. M. Rice, Metal-insulator transitions in pure and doped V2O3, Phys. Rev. B 7(5), 1920 (1973)
https://doi.org/10.1103/PhysRevB.7.1920
7 C. Castellani, C. R. Natoli, and J. Ranninger, Metalinsulator transition in pure and Cr-doped V2O3, Phys. Rev. B 18(9), 5001 (1978)
https://doi.org/10.1103/PhysRevB.18.5001
8 S. A. Carter, T. F. Rosenbaum, P. Metcalf, J. M. Honig, and J. Spalek, Mass enhancement and magnetic order at the Mott–Hubbard transition, Phys. Rev. B 48(22), 16841 (1993)
https://doi.org/10.1103/PhysRevB.48.16841
9 S. N. Ruddlesden and P. Popper, New compounds of the K2NIF4 type, Acta Crystallogr. 10(8), 538 (1957)
https://doi.org/10.1107/S0365110X57001929
10 Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Superconductivity in a layered perovskite without copper, Nature 372(6506), 532 (1994)
https://doi.org/10.1038/372532a0
11 K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Q. Mao, Y. Mori, and Y. Maeno, Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift, Nature 396(6712), 658 (1998)
https://doi.org/10.1038/25315
12 S. A. Grigera, R. S. Perry, A. J. Schofield, M. Chiao, S. R. Julian, G. G. Lonzarich, S. I. Ikeda, Y. Maeno, A. J. Millis, and A. P. Mackenzie, Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2O7, Science 294(5541), 329 (2001)
https://doi.org/10.1126/science.1063539
13 J. M. Longo, P. M. Raccah, and J. B. Goodenough, Magnetic Properties of SrRuO3 and CaRuO3, J. Appl. Phys. 39(2), 1327 (1968)
https://doi.org/10.1063/1.1656282
14 S. Nakatsuji, S. I. Ikeda, and Y. Maeno, Ca2RuO4: New Mott insulators of layered ruthenate, J. Phys. Soc. Jpn. 66(7), 1868 (1997)
https://doi.org/10.1143/JPSJ.66.1868
15 J. H. Jung, Z. Fang, J. P. He, Y. Kaneko, Y. Okimoto, and Y. Tokura, Change of electronic structure in Ca2RuO4 induced by orbital ordering, Phys. Rev. Lett. 91(5), 056403 (2003)
https://doi.org/10.1103/PhysRevLett.91.056403
16 Y. Yoshida, I. Nagai, S. I. Ikeda, N. Shirakawa, M. Kosaka, and N. Môri, Quasi-two-dimensional metallic ground state of Ca3Ru2O7, Phys. Rev. B 69(22), 220411 (2004)
https://doi.org/10.1103/PhysRevB.69.220411
17 Y. Yoshida, S. I. Ikeda, H. Matsuhata, N. Shirakawa, C. H. Lee, and S. Katano, Crystal and magnetic structure of Ca3Ru2O7, Phys. Rev. B 72(5), 054412 (2005)
https://doi.org/10.1103/PhysRevB.72.054412
18 K. Yoshimura, T. Imai, T. Kiyama, K. R. Thurber, A. W. Hunt, and K. Kosuge, O17 NMR observation of universal behavior of ferromagnetic spin fluctuations in the itinerant magnetic system Sr1−xCaxRuO3, Phys. Rev. Lett. 83(21), 4397 (1999)
https://doi.org/10.1103/PhysRevLett.83.4397
19 J. Peng, M. Q. Gu, X. M. Gu, G. T. Zhou, X. Y. Gao, J. Y. Liu, W. F. Xu, G. Q. Liu, X. Ke, L. Zhang, H. Han, Z. Qu, D. W. Fu, H. L. Cai, F. M. Zhang, Z. Q. Mao, and X. S. Wu, Mott transition controlled by lattice-orbital coupling in 3 d-metal-doped double-layer ruthenates, Phys. Rev. B 96(20), 205105 (2017)
https://doi.org/10.1103/PhysRevB.96.205105
20 G. Cao, S. McCall, J. E. Crow, and R. P. Guertin, Observation of a metallic antiferromagnetic phase and metal to nonmetal transition in Ca3Ru2O7, Phys. Rev. Lett. 78(9), 1751 (1997)
https://doi.org/10.1103/PhysRevLett.78.1751
21 W. Bao, Z. Q. Mao, Z. Qu, and J. W. Lynn, Spin valve effect and magnetoresistivity in single crystalline Ca3Ru2O7, Phys. Rev. Lett. 100(24), 247203 (2008)
https://doi.org/10.1103/PhysRevLett.100.247203
22 X. Ke, J. Peng, D. J. Singh, T. Hong, W. Tian, C. R. Dela Cruz, and Z. Q. Mao, Emergent electronic and magnetic state in Ca3Ru2O7 induced by Ti doping, Phys. Rev. B 84(20), 201102 (2011)
https://doi.org/10.1103/PhysRevB.84.201102
23 J. Peng, X. Ke, G. Wang, J. E. Ortmann, D. Fobes, T. Hong, W. Tian, X. Wu, and Z. Q. Mao, From quasitwo- dimensional metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca3(Ru1−xTix)2O7, Phys. Rev. B 87(8), 085125 (2013)
https://doi.org/10.1103/PhysRevB.87.085125
24 X. Ke, J. Peng, W. Tian, T. Hong, M. Zhu, and Z. Q. Mao, Commensurate-incommensurate magnetic phase transition in the Fe-doped bilayer ruthenate Ca3Ru2O7, Phys. Rev. B 89(22), 220407 (2014)
https://doi.org/10.1103/PhysRevB.89.220407
25 B. F. Woodfield, M. L. Wilson, and J. M. Byers, Lowtemperature specific heat of La1−xSrxMnO3+d, Phys. Rev. Lett. 78(16), 3201 (1997)
https://doi.org/10.1103/PhysRevLett.78.3201
26 A. L. Cornelius, B. E. Light, and J. J. Neumeier, Evolution of the magnetic ground state in the electron-doped antiferromagnet CaMnO3, Phys. Rev. B 68(1), 014403 (2003)
https://doi.org/10.1103/PhysRevB.68.014403
27 C. He, S. Eisenberg, C. Jan, H. Zheng, J. F. Mitchell, and C. Leighton, Heat capacity study of magnetoelectronic phase separation in La1−xSrxCoO3 single crystals, Phys. Rev. B 80(21), 214411 (2009)
https://doi.org/10.1103/PhysRevB.80.214411
28 P. Raychaudhuri, C. Mitra, A. Paramekanti, R. Pinto, A. K. Nigam, and S. K. Dhar, The metal-insulator transition and ferromagnetism in the electron-doped layered manganites (x= 0, 0.3, 0.5), J. Phys. Condens. Matter 10(12), L191 (1998)
https://doi.org/10.1088/0953-8984/10/12/002
29 J. E. Gordon, R. A. Fisher, Y. X. Jia, N. E. Phillips, S. F. Reklis, D. A. Wright, and A. Zettl, Specific heat of Nd0.67Sr0.33MnO3, Phys. Rev. B 59(1), 127 (1999)
https://doi.org/10.1103/PhysRevB.59.127
30 L. Ghivelder, I. Abrego Castillo, M. A. Gusmão, J. A. Alonso, and L. F. Cohen, Specific heat and magnetic order in LaMnO3+d, Phys. Rev. B 60(17), 12184 (1999)
https://doi.org/10.1103/PhysRevB.60.12184
31 K. Mamiya, T. Mizokawa, A. Fujimori, T. Miyadai, N. Chandrasekharan, S. R. Krishnakumar, D. D. Sarma, H. Takahashi, N. Môri, and S. Suga, Photoemission study of the metal-insulator transition in NiS2−xSex, Phys. Rev. B 58(15), 9611 (1998)
https://doi.org/10.1103/PhysRevB.58.9611
32 S. Ogawa, Magnetic properties of 3d transition-metal dichalcogenides with the pyrite structure, J. Appl. Phys. 50(B3), 2308 (1979)
https://doi.org/10.1063/1.327037
33 T. Okuda, A. Asamitsu, Y. Tomioka, T. Kimura, Y. Taguchi, and Y. Tokura, Critical behavior of the metalinsulator transition in La1−xSrxMnO3, Phys. Rev. Lett. 81(15), 3203 (1998)
https://doi.org/10.1103/PhysRevLett.81.3203
[1] C. Echeverria, K. Tucci, O. Alvarez-Llamoza, E. E. Orozco-Guillén, M. Morales, M. G. Cosenza. Mesoscopic model for binary fluids[J]. Front. Phys. , 2017, 12(5): 128703-.
[2] KOU Su-peng, WENG Zheng-yu, WEN Xiao-gang. Mutual Chern-Simons theory and its applications in condensed matter physics[J]. Front. Phys. , 2007, 2(1): 31-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed