Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (5) : 137309    https://doi.org/10.1007/s11467-018-0815-x
RESEARCH ARTICLE
Alkali-metal-induced topological nodal line semimetalin layered XN2 (X= Cr, Mo, W)
Ali Ebrahimian(), Mehrdad Mehrdad Dadsetaniz()
Department of Physics, Lorestan University, Khoramabad, Iran
 Download: PDF(7576 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on first principles calculations and the K·p effective model, we propose that alkali metal deposition on the surface of hexagonal XN2 (X= Cr, Mo, W) nanosheets induces topologically nontrivial phases in these systems. When spin orbit coupling (SOC) is disregarded, the electron-like conduction band from N-pz orbitals can be considered to cross the hole-like valence band from X-d2z orbitals, thereby giving rise to a topological nodal line state in lithium-functionalized XN2 sheets (Li2MoN2 and Li2WN2). Such band crossing is protected by the existence of mirror reflection and time reversal symmetry. More interestingly, the bands cross exactly at the Fermi level, and the linear dispersion regions of such band crossings extend to as high as 0.9 eV above the crossing. For Li2CrN2, the results reveal the emergence of a Dirac cone at the Fermi level. Our calculations show that lattice compression decreases the thickness of a Li2CrN2 nanosheet, leading to phase transition to a nodal line semimetal. The evolution of the band gap of Li2XN2 at the Γ point indicates that the nontrivial topological character of Li2XN2 nanolayers is stable over a large strain range. When SOC is included, the band crossing point is gapped out giving rise to quantum spin Hall states in Li2CrN2 nanosheets, while for Li2MoN2, the SOC-induced gap at the crossing points is negligible.

Keywords topological semimetal      nodal-line states      Dirac cone      band inversion     
Corresponding Author(s): Ali Ebrahimian,Mehrdad Mehrdad Dadsetaniz   
Issue Date: 06 August 2018
 Cite this article:   
Ali Ebrahimian,Mehrdad Mehrdad Dadsetaniz. Alkali-metal-induced topological nodal line semimetalin layered XN2 (X= Cr, Mo, W)[J]. Front. Phys. , 2018, 13(5): 137309.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0815-x
https://academic.hep.com.cn/fop/EN/Y2018/V13/I5/137309
1 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
2 K. He, Topological insulator: Both two- and threedimensional, Front. Phys. 7(2), 148 (2012)
https://doi.org/10.1007/s11467-012-0248-x
3 D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970 (2008)
https://doi.org/10.1038/nature06843
4 Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5(6), 398 (2009)
5 S. Y. Xu, C. Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski, J. D. Denlinger, Y. J. Wang, H. Lin, L. A. Wray, G. Landolt, B. Slomski, J. H. Dil, A. Marcinkova, E. Morosan, Q. Gibson, R. Sankar, F. C. Chou, R. J. Cava, A. Bansil, and M. Z. Hasan, Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe, Nat. Commun. 3(1), 1192 (2012)
https://doi.org/10.1038/ncomms2191
6 S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, F. Chou, P. P. Shibayev, R. J. Cava, and M. Z. Hasan, Observation of Fermi arc surface states in a topological metal, Science 347(6219), 294 (2015)
https://doi.org/10.1126/science.1256742
7 Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)
https://doi.org/10.1103/PhysRevB.88.125427
8 B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5(3), 031013 (2015)
https://doi.org/10.1103/PhysRevX.5.031013
9 C. K. Chiu and A. P. Schnyder, Classification of reflection-symmetry-protected topological semimetals and nodal superconductors, Phys. Rev. B 90(20), 205136 (2014)
https://doi.org/10.1103/PhysRevB.90.205136
10 J. Behrends, J. W. Rhim, S. Liu, A. G. Grushin, and J. H. Bardarson, Nodal-line semimetals from Weyl superlattices, Phys. Rev. B 96(24), 245101 (2017)
https://doi.org/10.1103/PhysRevB.96.245101
11 T. Bzdušek, Q. Wu, A. Ruegg, M. Sigrist, and A. A. Soluyanov, Nodal-chain metals, Nature 538(7623), 75 (2016)
https://doi.org/10.1038/nature19099
12 H. Weng, X. Dai, and Z. Fang, Topological semimetals predicted from first-principles calculations, J. Phys.: Condens. Matter 28(30), 303001 (2016)
https://doi.org/10.1088/0953-8984/28/30/303001
13 B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals, Science 353(6299), aaf5037 (2016)
https://doi.org/10.1126/science.aaf5037
14 H. Weng, C. Fang, Z. Fang, and X. Dai, Coexistence of Weyl fermion and massless triply degenerate nodal points, Phys. Rev. B 94(16), 165201 (2016)
https://doi.org/10.1103/PhysRevB.94.165201
15 G. T. Volovik, Momentum space topology of fermion zero modes brane, JETP Lett. 75(2), 55 (2002)
https://doi.org/10.1134/1.1466475
16 S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett. 108(14), 140405 (2012)
https://doi.org/10.1103/PhysRevLett.108.140405
17 M. Dadsetani and A. Ebrahimian, Breaking inversion symmetry induces excitonic peak in optical absorption of topological semimetal, J. Phys. Chem. Solids 100, 161 (2017)
https://doi.org/10.1016/j.jpcs.2016.10.002
18 M. Dadsetani and A. Ebrahimian, Optical distinctions between Weyl semimetal TaAs and Dirac semimetal Na3Bi: An ab initio investigation,Journal of Elec., Materi. 45, 5867 (2016)
https://doi.org/10.1007/s11664-016-4766-0
19 Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)
https://doi.org/10.1103/PhysRevB.85.195320
20 A. A. Burkov, Topological semimetals, Nat. Mater. 15(11), 1145 (2016)
https://doi.org/10.1038/nmat4788
21 X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
https://doi.org/10.1103/PhysRevB.83.205101
22 A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal semimetals, Phys. Rev. B 84(23), 235126 (2011)
https://doi.org/10.1103/PhysRevB.84.235126
23 M. Z. Hasan, S. Y. Xu, I. Belopolski, and S. M. Huang, Discovery of weyl fermion semimetals and topological fermi arc states, Annu. Rev. Condens. Matter Phys. 8(1), 289 (2017)
https://doi.org/10.1146/annurev-conmatphys-031016-025225
24 C. Fang, Y. Chen, H. Y. Kee, and L. Fu, Topological nodal line semimetals with and without spin-orbital coupling, Phys. Rev. B 92(8), 081201 (2015)
https://doi.org/10.1103/PhysRevB.92.081201
25 Y. X. Zhao, A. P. Schnyder, and Z. D. Wang, Unified theory of PT and CP invariant topological metals and nodal superconductors, Phys. Rev. Lett. 116(15), 156402 (2016)
https://doi.org/10.1103/PhysRevLett.116.156402
26 R. Yu, Z. Fang, X. Dai, and H. Weng, Topological nodal line semimetals predicted from first-principles calculations, Front. Phys. 12(3), 127202 (2017)
https://doi.org/10.1007/s11467-016-0630-1
27 H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentro-symmetric transition-metal monophosphides, Phys. Rev. X 5(1), 011029 (2015)
https://doi.org/10.1103/PhysRevX.5.011029
28 Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, Three-dimensional Dirac semimetals: Design principles and predictions of new materials, Phys. Rev. B 91(20), 205128 (2015)
https://doi.org/10.1103/PhysRevB.91.205128
29 M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun. 5(1), 3786 (2014)
https://doi.org/10.1038/ncomms4786
30 S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett. 113(2), 027603 (2014)
https://doi.org/10.1103/PhysRevLett.113.027603
31 Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a threedimensional topological Dirac semimetal, Na3Bi, Science 343(6173), 864 (2014)
https://doi.org/10.1126/science.1245085
32 S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, Observation of Fermi arc surface states in a topological metal, Science 347(6219), 294 (2015)
https://doi.org/10.1126/science.1256742
33 G. Bian, T. R. Chang, R. Sankar, S. Y. Xu, H. Zheng, T. Neupert, C. K. Chiu, S. M. Huang, G. Chang, I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. Wang, C. C. Lee, H. T. Jeng, C. Zhang, Z. Yuan, S. Jia, A. Bansil, F. Chou, H. Lin, and M. Z. Hasan, Topological nodal-line fermions in spin-orbit metal PbTaSe2, Nat. Commun. 7, 10556 (2016)
https://doi.org/10.1038/ncomms10556
34 Y. Wu, L. L. Wang, E. Mun, D. D. Johnson, D. Mou, L. Huang, Y. Lee, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, Dirac node arcs in PtSn4, Nat. Phys. 12(7), 667 (2016)
35 L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS, Nat. Commun. 7, 11696 (2016)
https://doi.org/10.1038/ncomms11696
36 M. Neupane, I. Belopolski, M. M. Hosen, D. S. Sanchez, R. Sankar, M. Szlawska, S. Y. Xu, K. Dimitri, N. Dhakal, P. Maldonado, P. M. Oppeneer, D. Kaczorowski, F. Chou, M. Z. Hasan, and T. Durakiewicz, Observation of topological nodal fermion semimetal phase in ZrSiS, Phys. Rev. B 93(20), 201104 (2016)
https://doi.org/10.1103/PhysRevB.93.201104
37 T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14(3), 280 (2015)
https://doi.org/10.1038/nmat4143
38 Y. Zhao, H. Liu, C. Zhang, H. Wang, J. Wang, Z. Lin, Y. Xing, H. Lu, J. Liu, Y. Wang, S. M. Brombosz, Z. Xiao, S. Jia, X. C. Xie, and J. Wang, Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2, Phys. Rev. X 5(3), 031037 (2015)
https://doi.org/10.1103/PhysRevX.5.031037
39 H. Wang, H. Wang, H. Liu, H. Lu, W. Yang, S. Jia, X.J. Liu, X. C. Xie, J. Wei, and J. Wang, Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals, Nat. Mater. 15(1), 38 (2016)
https://doi.org/10.1038/nmat4456
40 H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Topological node-line semimetal in threedimensional graphene networks, Phys. Rev. B 92(4), 045108 (2015)
https://doi.org/10.1103/PhysRevB.92.045108
41 R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN, Phys. Rev. Lett. 115(3), 036807 (2015)
https://doi.org/10.1103/PhysRevLett.115.036807
42 Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac line nodes in inversion-symmetric crystals, Phys. Rev. Lett. 115(3), 036806 (2015)
https://doi.org/10.1103/PhysRevLett.115.036806
43 J. Zhang, M. Gao, J. Zhang, X. Wang, X. Zhang, M. Zhang, W. Niu, R. Zhang, and Y. Xu, Transport evidence of 3D topological nodal-line semimetal phase in ZrSiS, Front. Phys. 13(1), 137201 (2018)
https://doi.org/10.1007/s11467-017-0705-7
44 L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS, Nat. Commun. 7, 11696 (2016)
https://doi.org/10.1038/ncomms11696
45 S. M. Young and C. L. Kane, Dirac semimetals in two dimensions, Phys. Rev. Lett. 115(12), 126803 (2015)
https://doi.org/10.1103/PhysRevLett.115.126803
46 C. Niu, P. M. Buhl, G. Bihlmayer, D. Wortmann, Y. Dai, S. Blügel, and Y. Mokrousov, Two-dimensional topological nodal line semimetal in layered X2Y (X= Ca, Sr, and Ba; Y=As, Sb, and Bi), Phys. Rev. B 95(23), 235138 (2017)
https://doi.org/10.1103/PhysRevB.95.235138
47 J. L. Lu, W. Luo, X. Y. Li, S. Q. Yang, J. X. Cao, X. G. Gong, and H. J. Xiang, Two-dimensional node-line semimetals in a honeycomb-Kagome lattice, Chin. Phys. Lett. 34(5), 057302 (2017)
https://doi.org/10.1088/0256-307X/34/5/057302
48 Y. J. Jin, R. Wang, J. Z. Zhao, Y. P. Du, C. D. Zheng, L. Y. Gan, J. F. Liu, H. Xu, and S. Y. Tong, The prediction of a family group of two-dimensional node-line semimetals, Nanoscale 9(35), 13112 (2017)
https://doi.org/10.1039/C7NR03520A
49 B. Yang, X. Zhang, and M. Zhao, Dirac node lines in two-dimensional Lieb lattices, Nanoscale 9(25), 8740 (2017)
https://doi.org/10.1039/C7NR00411G
50 A. Ebrahimian and M. Dadsetani, Dependence of topological and optical properties on surface-terminated groups in two-dimensional molybdenum dinitride and tungsten dinitride nanosheets, Phys. Chem. Chem. Phys. 19(45), 30301 (2017)
https://doi.org/10.1039/C7CP05844F
51 B. Feng, B. Fu, S. Kasamatsu, S. Ito, P. Cheng, C. C. Liu, Y. Feng, S. Wu, S. K. Mahatha, P. Sheverdyaeva, P. Moras, M. Arita, O. Sugino, T. C. Chiang, K. Shimada, K. Miyamoto, T. Okuda, K. Wu, L. Chen, Y. Yao, and I. Matsuda, Experimental realization of twodimensional Dirac nodal line fermions in monolayer Cu2Si, Nat. Commun. 8(1), 1007 (2017)
https://doi.org/10.1038/s41467-017-01108-z
52 N. B. Kopnin, T. T. Heikkila, and G. E. Volovik, High temperature surface superconductivity in topological flat-band systems, Phys. Rev. B 83(22), 220503 (2011)
https://doi.org/10.1103/PhysRevB.83.220503
53 Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors, Phys. Rev. B 84(15), 153402 (2011)
https://doi.org/10.1103/PhysRevB.84.153402
54 D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI Dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
https://doi.org/10.1103/PhysRevLett.108.196802
55 Y. Ma, L. Kou, X. Li, Y. Dai, and T. Heine, Twodimensional transition metal dichalcogenides with a hexagonal lattice: Room-temperature quantum spin Hall insulators, Phys. Rev. B 93(3), 035442 (2016)
https://doi.org/10.1103/PhysRevB.93.035442
56 P. F. Liu, L. Zhou, T. Frauenheim, and L. M. Wu, New quantum spin Hall insulator in two-dimensional MoS2, with periodically distributed pores, Nanoscale 8(9), 4915 (2016)
https://doi.org/10.1039/C5NR08842A
57 P. F. Liu, L. Zhou, T. Frauenheim, and L. M. Wu, Two dimensional hydrogenated molybdenum and tungsten dinitrides MN2H2 (M= Mo, W) as novel quantum spin hall insulators with high stability, Nanoscale 9(3), 1007 (2017)
https://doi.org/10.1039/C6NR08923B
58 N. Alidoust, G. Bian, S. Y. Xu, R. Sankar, M. Neupane, C. Liu, I. Belopolski, D. X. Qu, J. D. Denlinger, F. C. Chou, and M. Z. Hasan, Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2, Nat. Commun. 5(1), 4673 (2014)
https://doi.org/10.1038/ncomms5673
59 K. Dolui, I. Rungger, C. Das Pemmaraju, and S. Sanvito, Possible doping strategies for MoS2 monolayers: An ab initio study, Phys. Rev. B 88(7), 075420 (2013)
https://doi.org/10.1103/PhysRevB.88.075420
60 J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
61 K. Hummer, J. Harl, and G. Kresse, Heyd-Scuseria- Ernzerhof hybrid functional for calculating the lattice dynamics of semiconductors, Phys. Rev. B 80(11), 115205 (2009)
https://doi.org/10.1103/PhysRevB.80.115205
62 F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchangecorrelation potential, Phys. Rev. Lett. 102(22), 226401 (2009)
https://doi.org/10.1103/PhysRevLett.102.226401
63 P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local OrbitalsProgram for Calculating Crystal Properties, TU Vienna, Vienna,2001
64 V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, Ab initio molecular simulations with numeric atom-centered orbitals, Comput. Phys. Commun. 180(11), 2175 (2009)
https://doi.org/10.1016/j.cpc.2009.06.022
65 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
66 X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material, Chem. Soc. Rev. 44(9), 2757 (2015)
https://doi.org/10.1039/C4CS00282B
67 See the Supplemental Material.
68 G. Bian, T. R. Chang, H. Zheng, S. Velury, S. Y. Xu, T. Neupert, C. K. Chiu, S. M. Huang, D. S. Sanchez, I. Belopolski, N. Alidoust, P. J. Chen, G. Chang, A. Bansil, H. T. Jeng, H. Lin, and M. Z. Hasan, Drumhead surface states and topological nodal-line fermions in TlTaSe2, Phys. Rev. B 93(12), 121113 (2016)
https://doi.org/10.1103/PhysRevB.93.121113
69 L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98(10), 106803 (2007)
https://doi.org/10.1103/PhysRevLett.98.106803
70 L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76(4), 045302 (2007)
https://doi.org/10.1103/PhysRevB.76.045302
[1] Jun-Ran Zhang, Bo Liu, Ming Gao, Yong-Bing Xu, Rong Zhang. Evidence of anisotropic Landau level splitting in topological semimetal ZrSiS under high magnetic fields[J]. Front. Phys. , 2019, 14(6): 63602-.
[2] Hai-Peng Sun, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (II)[J]. Front. Phys. , 2019, 14(3): 33405-.
[3] Rui Yu,Zhong Fang,Xi Dai,Hongming Weng. Topological nodal line semimetals predicted from first-principles calculations[J]. Front. Phys. , 2017, 12(3): 127202-.
[4] Hai-Zhou Lu,Shun-Qing Shen. Quantum transport in topological semimetals under magnetic fields[J]. Front. Phys. , 2017, 12(3): 127201-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed