Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (2) : 24501    https://doi.org/10.1007/s11467-020-0990-4
RESEARCH ARTICLE
Nearby source interpretation of differences among light and medium composition spectra in cosmic rays
Qiang Yuan1,2,3(), Bing-Qiang Qiao1,4, Yi-Qing Guo4, Yi-Zhong Fan1,2, Xiao-Jun Bi4,5
1. Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
2. School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China
3. Center for High Energy Physics, Peking University, Beijing 100871, China
4. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
5. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(952 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently the AMS-02 reported the precise measurements of the energy spectra of medium-mass compositions (Neon, Magnesium, Silicon) of primary cosmic rays, which reveal different properties from those of light compositions (Helium, Carbon, Oxygen). Here we propose a nearby source scenario, together with the background source contribution, to explain the newly measured spectra of cosmic ray Ne, Mg, Si, and particularly their differences from that of He, C, O. Their differences at high energies can be naturally accounted for by the element abundance of the nearby source. Specifically, the abundance ratio of the nearby source to the background of the Ne, Mg, Si elements is lower by a factor of ∼ 1.7 than that of the He, C, O elements. Such a difference could be due to the abundance difference of the stellar evolution of the progenitor star or the acceleration process/environment, of the nearby source. This scenario can simultaneously explain the high-energy spectral softening features of cosmic ray spectra revealed recently by CREAM/NUCLEON/DAMPE, as well as the energy-dependent behaviors of the large-scale anisotropies. It is predicted that the dipole anisotropy amplitudes below PeV energies of the Ne, Mg, Si group are smaller than that of the He, C, O group, which can be tested with future measurements.

Keywords cosmic rays      spectra and anisotropies     
Corresponding Author(s): Qiang Yuan   
Just Accepted Date: 25 August 2020   Issue Date: 23 October 2020
 Cite this article:   
Qiang Yuan,Bing-Qiang Qiao,Yi-Qing Guo, et al. Nearby source interpretation of differences among light and medium composition spectra in cosmic rays[J]. Front. Phys. , 2021, 16(2): 24501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0990-4
https://academic.hep.com.cn/fop/EN/Y2021/V16/I2/24501
1 A. D. Panov, J. H. Jr Adams, H. S. Ahn, G. L. Bashinzhagyan, J. W. Watts, et al., Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results, Bull. Russ. Acad. Sci.: Physics 73(5), 564 (2009)
https://doi.org/10.3103/S1062873809050098
2 H. S. Ahn, P. Allison, M. G. Bagliesi, J. J. Beatty, G. Bigongiari, et al., Discrepant hardening observed in cosmic-ray elemental spectra, Astrophys. J. 714(1), L89 (2010)
https://doi.org/10.1088/2041-8205/714/1/L89
3 O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, et al., PAMELA measurements of cosmicray proton and helium spectra, Science 332(6025), 69 (2011)
4 M. Aguilar, D. Aisa, B. Alpat, A. Alvino, G. Ambrosi, et al., Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 114(17), 171103 (2015)
5 M. Aguilar, D. Aisa, B. Alpat, A. Alvino, G. Ambrosi, et al., Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 115(21), 211101 (2015)
6 M. Aguilar, L. Ali Cavasonza, B. Alpat, G. Ambrosi, L. Arruda, et al., Observation of the identical rigidity dependence of He, C, and O cosmic rays at high rigidities by the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 119(25), 251101 (2017)
7 O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, et al., Direct measurement of the cosmic-ray proton spectrum from 50 GeV to 10 TeV with the calorimetric electron telescope on the international space station, Phys. Rev. Lett. 122(18), 181102 (2019)
8 Q. An, A. Kumamoto, R. Xiang, T. Inoue, K. Otsuka, S. Chiashi, C. Bichara, A. Loiseau, Y. Li, Y. Ikuhara, and S. Maruyama, Measurement of the cosmic-ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite, Sci. Adv. 5(5), eaax3793 (2019)
9 Y. S. Yoon, T. Anderson, A. Barrau, N. B. Conklin, S. Coutu, et al.Proton and helium spectra from the CREAMIII flight, Astrophys. J. 839(1), 5 (2017)
https://doi.org/10.3847/1538-4357/aa68e4
10 E. Atkin, V. Bulatov, V. Dorokhov, N. Gorbunov, S. Filippov, et al., New universal cosmic-ray knee near a magnetic rigidity of 10 TV with the nucleon space observatory, JETP Lett. 108(1), 5 (2018)
https://doi.org/10.1134/S0021364018130015
11 Y. Ohira and K. Ioka, Cosmic-ray helium hardening, Astrophys. J. 729(1), L13 (2011)
https://doi.org/10.1088/2041-8205/729/1/L13
12 Q. Yuan, B. Zhang, and X. J. Bi, Cosmic ray spectral hardening due to dispersion in the source injection spectra, Phys. Rev. D 84(4), 043002 (2011)
https://doi.org/10.1103/PhysRevD.84.043002
13 A. E. Vladimirov, G. Jóhannesson, I. V. Moskalenko, and T. A. Porter, Testing the origin of high-energy cosmic rays, Astrophys. J. 752(1), 68 (2012)
https://doi.org/10.1088/0004-637X/752/1/68
14 N. Tomassetti, Origin of the cosmic-ray spectral hardening, Astrophys. J. 752(1), L13 (2012)
https://doi.org/10.1088/2041-8205/752/1/L13
15 P. Blasi, E. Amato, and P. D. Serpico, Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy, Phys. Rev. Lett. 109(6), 061101 (2012)
https://doi.org/10.1103/PhysRevLett.109.061101
16 Y. Q. Guo, Z. Tian, and C. Jin, Spatial-dependent propagation of cosmic rays results in spectrum of proton, ratios of p-/p, B/C and anisotropy of nuclei, Astrophys. J. 819(1), 54 (2016)
https://doi.org/10.3847/0004-637X/819/1/54
17 Y. Q. Guo and Q. Yuan, Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse rays with spatially-dependent propagation, Phys. Rev. D 97(6), 063008 (2018)
https://doi.org/10.1103/PhysRevD.97.063008
18 D. Karmanov, I. Kovalev, I. Kudryashov, A. Kurganov, V. Latonov, A. Panov, D. Podorozhnyy, and A. Turundaevskiy, A possibility of interpretation of the cosmic ray kneenear 10 TV as a contribution of a single close source, arXiv: 1907.05987 (2019)
19 C. Yue, P. X. Ma, Q. Yuan, Y. Z. Fan, Z. F. Chen, et al.Implications on the origin of cosmic rays in light of 10 TV spectral softenings, Front. Phys. 15(2), 24601 (2020)
https://doi.org/10.1007/s11467-019-0946-8
20 K. Fang, X.J. Bi, and P. F. Yin, DAMPE proton spectrum indicates a slow-diffusion zone in the nearby ISM, arXiv: 2003.13635 (2020)
21 M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig, et al., Properties of neon, magnesium, and silicon primary cosmic rays results from the alpha magnetic spectrometer, Phys. Rev. Lett. 124(21), 211102 (2020)
22 L. G. Sveshnikova, O. N. Strelnikova, and V. S. Ptuskin, Spectrum and anisotropy of cosmic rays at TeV–PeVenergies and contribution of nearby sources, Astropart. Phys. 50–52, 33 (2013)
https://doi.org/10.1016/j.astropartphys.2013.08.007
23 V. Savchenko, M. Kachelrieß, and D. V. Semikoz, Imprint of a 2 million year old source on the cosmic-ray anisotropy, Astrophys. J. 809(2), L23 (2015)
https://doi.org/10.1088/2041-8205/809/2/L23
24 W. Liu, Y.-Q. Guo, and Q. Yuan, Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies, J. Cosmol. Astropart. Phys. 10, 010 (2019)
https://doi.org/10.1088/1475-7516/2019/10/010
25 B.-Q. Qiao, W. Liu, Y.-Q. Guo, and Q. Yuan, Anisotropies of different mass compositions of cosmic rays, J. Cosmol. Astropart. Phys. 2019, 007 (2019)
https://doi.org/10.1088/1475-7516/2019/12/007
26 M. Aglietta, B. Alessandro, P. Antonioli, F. Arneodo, L. Bergamasco, et al., A measurement of the solar and sidereal cosmic-ray anisotropy at E0 approximately 1014 eV, Astrophys. J. 470, 501 (1996)
https://doi.org/10.1086/177881
27 M. Amenomori, S. Ayabe, X. J. Bi, D. Chen, S. W. Cui, et al.Anisotropy and corotation of galactic cosmic rays, Science 314(5798), 439 (2006)
28 M. Aglietta, V. V. Alekseenko, B. Alessandro, P. Antonioli, F. Arneodo, et al., Evolution of the cosmic-ray anisotropy above 1014 eV, Astrophys. J. 692(2), L130 (2009)
https://doi.org/10.1088/0004-637X/692/2/L130
29 M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, et al., Anisotropy in cosmic-ray arrival directions in the southern hemisphere based on six years of data from the Icecube detector, Astrophys. J. 826(2), 220 (2016)
30 M. Amenomori, X. J. Bi, D. Chen, T. L. Chen, W. Y. Chen, et al., Northern sky galactic cosmic ray anisotropy between 10 and 1000 TeV with the Tibet air shower array, Astrophys. J. 836(2), 153 (2017)
31 Q. Yuan, Implications on cosmic ray injection and propagation parameters from Voyager/ACE/AMS-02 nucleus data, Sci. China Phys. Mech. Astron. 62(4), 49511 (2019)
https://doi.org/10.1007/s11433-018-9300-0
32 G. L. Case and D. Bhattacharya, A new Σ–D relation and its application to the galactic supernova remnant distribution, Astrophys. J. 504(2), 761 (1998)
https://doi.org/10.1086/306089
33 N. Tomassetti, Cosmic-ray protons, nuclei, electrons, and antiparticles under a two-halo scenario of diffusive propagation, Phys. Rev. D 92(8), 081301 (2015)
https://doi.org/10.1103/PhysRevD.92.081301
34 J. Feng, N. Tomassetti, and A. Oliva, Bayesian analysis of spatial-dependent cosmic-ray propagation: Astrophysical background of antiprotons and positrons, Phys. Rev. D 94(12), 123007 (2016)
https://doi.org/10.1103/PhysRevD.94.123007
35 A. U. Abeysekara, A. Albert, R. Alfaro, C. Alvarez, J. D. Álvarez, et al., Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth, Science 358(6365), 911 (2017)
36 Q. Yuan, S. J. Lin, K. Fang, and X. J. Bi, Propagation of cosmic rays in the AMS-02 era, Phys. Rev. D 95(8), 083007 (2017)
https://doi.org/10.1103/PhysRevD.95.083007
37 E. S. Seo and V. S. Ptuskin, Stochastic reacceleration of cosmic rays in the interstellar medium, Astrophys. J. 431, 705 (1994)
https://doi.org/10.1086/174520
38 C. Evoli, D. Gaggero, D. Grasso, and L. Maccione, Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: a new diffusion model, J. Cosmol. Astropart. Phys. 2008(10), 018 (2008)
https://doi.org/10.1088/1475-7516/2008/10/018
39 C. Evoli, D. Gaggero, A. Vittino, G. Di Bernardo, M. Di Mauro, A. Lig-orini, P. Ullio, and D. Grasso, Cosmic-ray propagation with DRAGON2 (I): Numerical solver and astrophysical ingredients, J. Cosmol. Astropart. Phys. 2, 015 (2017)
https://doi.org/10.1088/1475-7516/2017/02/015
40 V. V. Smith, K. Cunha, and B. Plez, Is Geminga a runaway member of the Orion association? Astron. Astrophys. 281, L41 (1994)
41 R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, The Australia Telescope National Facility Pulsar Catalogue, Astron. J. 129(4), 1993 (2005)
https://doi.org/10.1086/428488
42 L. J. Gleeson and W. I. Axford, Solar modulation of galactic cosmic rays, Astrophys. J. 154, 1011 (1968)
https://doi.org/10.1086/149822
43 S. Sakakibara, H. Ueno, K. Fujimoto, I. Kondo, and K. Nagashima, in: International Cosmic Ray Conference (1973), Vol. 2 of International Cosmic Ray Conference, p. 1058
44 M. Bercovitch and S. P. Agrawal, in: International Cosmic Ray Conference (1981), Vol. 10 of International Cosmic Ray Conference, pp 246–249
45 V. V. Alexeyenko, A. E. Chudakov, E. N. Gulieva, and V. G. Sborschikov, in: International Cosmic Ray Conference (1981), Vol. 2 of International Cosmic Ray Conference, p. 146
46 V. V. Alekseenko, A. B. Cherniaev, D. D. Djappuev, A. U. Kudjaev, O. I. Michailova, Y. V. Stenkin, V. I. Stepanov, and V. I. Volchenko, 10–100 TeV cosmic ray anisotropy measured at the Baksan EAS“Carpet”array, Nucl. Phys. B Proc. Suppl. 196, 179 (2009)
https://doi.org/10.1016/j.nuclphysbps.2009.09.032
47 Y. M. Andreyev, A. E. Chudakov, V. A. Kozyarivsky, A. M. Sidorenko, T. I. Tulupova, and A. V. Voevodsky, in: International Cosmic Ray Conference (1987), Vol. 2 of International Cosmic Ray Conference, p. 22
48 D. B. Swinson and K. Nagashima, Corrected sidereal anisotropy for underground muons, Planet. Space Sci. 33(9), 1069 (1985)
https://doi.org/10.1016/0032-0633(85)90025-X
49 K. Munakata, et al., in: International Cosmic Ray Conference (1995), Vol. 4, p. 639
50 S. Mori, S. Yasue, K. Munakata, C. Kato, S. Akahane, M. Koyama, and T. Kitawada, in: International Cosmic Ray Conference (1995), Vol. 4 of International Cosmic Ray Conference, p. 648
51 K. B. Fenton, A. G. Fenton, and J. E. Humble, in International Cosmic Ray Conference (1995), Vol. 4, p. 635
52 M. Ambrosio, R. Antolini, A. Baldini, G. C. Barbarino, B. C. Barish, et al., Search for the sidereal and solar diurnal modulations in the total MACRO muon data set, Phys. Rev. D 67(4), 042002 (2003)
53 T. Gombosi, J. K’ota, A. J. Somogyi, A. Varga, B. Betev, L. Katsarski, S. Kavlakov, and I. Khirov, in: International Cosmic Ray Conference (1975), Vol. 2 of International Cosmic Ray Conference, pp 586–591
54 M. Aglietta, et al., in: International Cosmic Ray Conference (1995), Vol. 2 of International Cosmic Ray Conference, p. 800
55 A. Chiavassa, et al., in: 34th International Cosmic Ray Conference (ICRC2015) (2015), Vol. 34 of International Cosmic Ray Conference, p. 281
56 R. Abbasi, Y. Abdou, T. Abu-Zayyad, J. Adams, J. A. Aguilar, et al., Measurement of the anisotropy of cosmicray arrival directions with Icecube, Astrophys. J. 718(2), L194 (2010)
57 M. G. Aartsen, R. Abbasi, Y. Abdou, M. Ackermann, J. Adams, et al., Observation of cosmic-ray anisotropy with the Icetop air shower array, Astrophys. J. 765(1), 55 (2013)
58 B. Bartoli, P. Bernardini, X. J. Bi, Z. Cao, S. Catalanotti, et al., ARGO-YBJ observation of the large-scale cosmic ray anisotropy during the solar minimum between cycles 23 and 24, Astrophys. J. 809(1), 90 (2015)
59 M. Amenomori, S. Ayabe, S. W. Cui, Danzengluobu, L. K. Ding, et al., Large-scale sidereal anisotropy of galactic cosmic-ray intensity observed by the Tibet air shower array, Astrophys. J. 626(1), L29 (2005)
60 M. Amenomori, et al., in: 34th International Cosmic Ray Conference (ICRC2015) (2015), Vol. 34 of International Cosmic Ray Conference, p. 355
61 X. Bai, B. Y. Bi, X. J. Bi, Z. Cao, S. Z. Chen, et al., The Large High Altitude Air Shower Observatory (LHAASO) science white paper, arXiv: 1905.02773 (2019)
62 R. Hirschi, G. Meynet, and A. Maeder, Yields of rotating stars at solar metallicity, Astron. Astrophys. 433(3), 1013 (2005)
https://doi.org/10.1051/0004-6361:20041554
63 M. Casse and P. Goret, Ionization models of cosmic ray sources, Astrophys. J. 221, 703 (1978)
https://doi.org/10.1086/156075
64 D. C. Ellison, L. O. Drury, and J. P. Meyer, Galactic cosmic rays from supernova remnants (II): Shock acceleration of gas and dust, Astrophys. J. 487(1), 197 (1997)
https://doi.org/10.1086/304580
[1] Chuan Yue, Peng-Xiong Ma, Qiang Yuan, Yi-Zhong Fan, Zhan-Fang Chen, Ming-Yang Cui, Hao-Ting Dai, Tie-Kuang Dong, Xiaoyuan Huang, Wei Jiang, Shi-Jun Lei, Xiang Li, Cheng-Ming Liu, Hao Liu, Yang Liu, Chuan-Ning Luo, Xu Pan, Wen-Xi Peng, Rui Qiao, Yi-Feng Wei, Li-Bo Wu, Zhi-Hui Xu, Zun-Lei Xu, Guan-Wen Yuan, Jing-Jing Zang, Ya-Peng Zhang, Yong-Jie Zhang, Yun-Long Zhang. Implications on the origin of cosmic rays in light of 10 TV spectral softenings[J]. Front. Phys. , 2020, 15(2): 24601-.
[2] Xiao-Jun Bi, Peng-Fei Yin, Qiang Yuan. Status of dark matter detection[J]. Front. Phys. , 2013, 8(6): 794-827.
[3] Francis Halzen. Neutrino astronomy: An update[J]. Front. Phys. , 2013, 8(6): 759-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed